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Introduction

In today’s technological landscape, numerous methods exist for
accessing remote resources, such as via databases or custom
APIs. The same applies to resource synchronization, which is
typically addressed on a case-by-case basis via methods such as
third-party databases, file synchronization services, or bespoke
synchronization protocols. Resource migration is also a frequent
challenge, solutions for which often rely on APIs better suited
for long-term persistence, like storing the resource in a remote
database. Existing solutions for resource synchronization are
generally custom-built per application, despite the typical
internal resource abstraction being a memory region or file.

What if, instead of applying application-specific protocols and
abstractions for accessing, synchronizing, and migrating
resources, these processes could be universally managed by
directly operating on the memory region? While systems for
interacting with remote memory exist, they primarily serve
niche purposes, such as virtual machine live migration. They
also suffer from the absence of a universal, generic API, often
due to their design based on compatibility with a particular
application’s architecture such as a specific hypervisor, rather
than them being intended for use as a library. This current
state significantly diminishes developer experience, and
represents a significant barrier for adoption.

In light of these limitations, this thesis explores alternative
strategies to create a more universal approach to remote
memory management. After looking at the current state of
related technology, it details the implementation of selected
methodologies using APIs like userfaultfd and NBD, discusses
challenges and potential optimizations, and provides an outline
for a universal API and related wire protocols. It also assesses
the performance of various configurations, like background push
and pull mechanisms, two-phase protocols and worker counts,
to determine the optimal use case for each approach as well as
their suitability for both WAN and LAN deployment contexts.
Ultimately, it introduces a comprehensive, production-ready
reference implementation of an NBD-based solution, which is
able to cover most use cases in real-world applications today
through the open-source r3map (remote mmap) library, before
continuing to future research opportunities and possible
improvements.
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User Space and Kernel Space

The kernel represents the core of an operating system. It
directly interacts with hardware, manages system resources such
as CPU time, memory and others, and enforces security policies.
In addition to this, it is also responsible for progress scheduling,
memory management, drivers and many more responsibilities
depending on the implementation. Kernel space refers to the
memory region that this system is stored and executed in[1].

User space on the other hand is the portion of system memory
where user applications execute. Applications can’t directly
access hardware or kernel memory; instead they use APIs to
access them[2]. This API is provided in the form of syscalls,
which serve as a bridge between user and kernel space.
Well-known syscalls are open(), read(), write(), close () and
ioctl (). While most syscalls have a specific purpose, ioctl
serves as a more generic, universal one based on file descriptors
and a data struct. Using it, it is possible to implement
device-specific actions that can’t be expressed with regular
system calls. Despite their utility, they can be an
implementation hurdle for language development due to their
use of numerical constants and other type system issues[3].
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Linux Kernel

The Linux kernel was released by Linus Torvalds in 1991.
Developed primarily in the C language, it has recently seen the
addition of Rust as an approved option for further expansion
and development, esp. for drivers[4]. The kernel powers millions
of devices across the globe, including servers, desktop
computers, mobile phones, and embedded devices. As a kernel,
it serves as an intermediary between hardware and applications.
It is engineered for compatibility with a wide array of
architectures, such as ARM, x86, RISC-V, and others. The
open-source nature of the Linux kernel makes it especially
interesting for academic exploration and usage. It offers
transparency, allowing anyone to inspect the source code in
depth. Furthermore, it encourages collaboration by enabling
anyone to modify and contribute to the source code.

The kernel does not function as a standalone operating system
in itself; rather, this role is fulfilled by distributions, which build
upon the Linux kernel to create fully-fledged operating systems.
Distributions supplement the kernel with additional user space
tools, examples being GNU coreutils or BusyBox. Depending
on their target audience, they further enhance functionality by
integrating desktop environments and other software.

Linux is extensible, but not a microkernel. Despite its
monolithic nature, it allows for the integration of kernel
modules. These modules are small pieces of kernel-level code
that can be dynamically incorporated into the kernel,
presenting the advantage of extending kernel functionality
without necessitating system reboot, helping to keep the kernel
size both manageable and maintainable. Kernel modules are
developed using the C or Rust programming languages, like the
kernel itself, ensuring compatibility and consistent performance.
They interact with the kernel via APIs (Application
Programming Interfaces). Despite their utility, since they run in
kernel space, modules do carry a potential risk. If not written
with careful attention to detail, they can introduce significant
instability into the kernel, negatively affecting the overall
system performance and reliability[5].

Modules can be managed and controlled at different stages,
starting from boot time, and be manipulated dynamically when
the system is already running. This is facilitated by utilities like
modprobe and rmmod. In the lifecycle of a kernel module, two
key functions are of significance: initialization and cleanup. The
initialization function is responsible for setting up the module
when it’s loaded into the kernel. Conversely, the cleanup
function is used to safely remove the module from the kernel,
freeing up any resources it previously consumed. These lifecycle
functions, along with other such hooks, provide a more
structured approach to module development[1].
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UNIX Signals and Sockets

UNIX signals are an integral component of UNIX-like systems,
including Linux. They function as software interrupts, notifying
a process of significant occurrences, such as exceptions. Signals
may be generated from various sources, including the kernel,
user input, or other processes, making them a versatile tool for
inter-process notifications.

Aside from this notification role, signals also serve as an
asynchronous communication mechanism between processes or
between the kernel and a process. As such, they have an
inherent ability to deliver important notifications without
requiring the recipient process to be in a specific state of
readiness[6]. Each signal has a default action associated with it,
the most common of which are terminating the process or
simply ignoring the signal.

To customize how a process should react upon receiving a
specific signal, handlers can be utilized. Handlers dictate the
course of action a process should take when a signal is received;
using the sigaction () function, a handler can be installed for a
specific signal, enabling a custom response to that signal such
as reloading configuration, cleaning up resources before exiting
or enabling verbose logging [7].

It is however important to note that signals are not typically
utilized as a primary inter-process communication (IPC)
mechanism. This is due to their limitation in carrying
additional data; while signals effectively alert a process of an
event, they are not designed to convey further information
related to that event, and as result they are best used in
scenarios where simple event-based notifications are sufficient,
rather than for more complex data exchange requirements. To
work around this, sockets allow processes within the same host
system to communicate with each other. Unlike UNIX signals,
but much like TCP sockets, they can easily be used for IPC by
supporting the inclusion of additional data with an event, and
are particularly popular on Linux.

Stream sockets use TCP to provide reliable, two-way,
connection-based byte streams, making them optimal for use in
applications which require strong consistency guarantees.
Datagram sockets on the other hand use UDP, which allows for
fast, connection-less communication with fewer guarantees. In
addition to these two different types of sockets, named and
unnamed sockets exist. Named sockets are represented by a
special file type on the file system and can be identified by a
path, which allows for easy communication between unrelated
processes. Unnamed sockets exist only in memory and
disappear after the creating process terminates, making them a
better choice for subsystems of applications to communicate
with each other. In addition to this, UNIX sockets can pass a
file descriptor between processes, which allows for interesting
approaches to sharing resources with technologies such as
userfaultfd [8].
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Principle of Locality

The principle of locality, or locality of reference, refers to the
tendency of a processor to recurrently access the same set of
memory locations within a brief span of time. This principle
forms the basis of a predictable pattern of behavior that is
evident across systems, and can be divided into two distinct
types: temporal locality and spatial locality.

Temporal locality is based on the frequent use of particular data
within a limited time period. Essentially, if a memory location
is accessed once, it is probable that this same location will be
accessed again in the near future. To make use of this pattern
and to improve performance, systems are designed to maintain
a copy of this frequently accessed data in a faster memory
storage, which in turn, significantly reduces the latency in
subsequent references.

Spatial locality, on the other hand, refers to the use of data
elements that are stored in nearby locations. That is, once a
particular memory location is accessed, the system assumes
that other nearby locations are also likely to be accessed shortly.
To optimize performance, the system tries to anticipate these
subsequent accesses by preparing for faster access to these
nearby memory locations, i.e. by loading the data into faster
memory storage. Temporal locality is considered a unique
instance of spatial locality, demonstrating how the two types
are closely interlinked[9].
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Memory Hierarchy

The memory hierarchy in computers is an organized structure
based on factors such as size, speed, cost, and proximity to the
Central Processing Unit (CPU). It follows the principle of
locality, which suggests that data and instructions that are
accessed frequently should be stored as close to the CPU as
possible[10]. This principle is crucial primarily due to the
limitations of “the speed of the cable”, where both throughput
and latency decrease as distance increases due to factors like
signal dampening and the finite speed of light. While latency
increases the further away a cache is from the CPU, the
capacity of these caches typically also increases, which can be a
worthwhile trade-off depending on the application.

At the top of the hierarchy are registers, which are closest to
the CPU. They offer very high speed, but provide limited
storage space, typically accommodating 32-64 bits of data.
These registers are used by the CPU to perform operations.

Following registers in the hierarchy is cache memory, typically
divided into L1, L2, and L3 levels. As the level increases, each
layer becomes larger and less expensive. Cache memory serves
as a buffer for frequently accessed data, with predictive
algorithms typically optimizing its usage.

Main Memory, i.e. Random Access Memory (RAM), provides
larger storage capacity than cache but operates at a slower
speed. It typically stores running programs and open files.

Below main memory, secondary storage devices such as Solid
State Drives (SSD) or Hard Disk Drives (HDD) can be found.
Although slower than RAM, these devices can store larger
amounts of data and typically contain the operating system and
application binary files. Importantly, they are typically
persistent, meaning they retain data even after power is cut[9].

Tertiary storage, including optical disks and tape, is slow but
very cost-effective. Tape storage can store very large amounts of
data for long periods of time. These types of storage are
typically used for archiving or physically transporting data,
such as importing data from personal infrastructure to a service
like AWS[11].

Depending on the technical choices for each of the hierarchy’s
layers, these latency differences can be quite significant, ranging
from below a nanosecond for registers to multiple milliseconds
for an HDD:

Figure 1: Latencies for different memory technologies showing, from
lowest to highest latency, registers, cache, main memory, CXL
memory, network-attached memory, SSDs and HDDs [12]

The memory hierarchy is not static but evolves with
technological advancements, leading to some blurring of these
distinct layers. For instance, Non-Volatile Memory Express
(NVMe) storage technologies can rival the speed of RAM while
offering greater storage capacities[12]. Similarly, some research,
such as the work presented in this thesis, further challenges
traditional hierarchies by exposing tertiary or secondary storage
with the same interface as main memory.
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Memory Management

Memory management forms an important aspect of any kernel,
serving as a critical buffer between applications and physical
memory; as such, it can be considered one of the fundamental
purposes of a kernel itself. This helps maintain stability and
provides security guarantees, such as ensuring that only a
specific process can access its allocated memory.

Within the context of Linux, memory management is divided
into the two aforementioned major segments of kernel space and
user space. The kernel memory module is responsible for
managing kernel space. Slab allocation is a technique employed
in managing this segment; the technique groups objects of the
same size into caches, enhancing memory allocation speed and
reducing fragmentation of memory[13]. User space is the
memory segment where applications and certain drivers store
their memory in Linux. User space memory management
involves a paging system, offering each application its unique
private virtual address space.

This virtual address space is divided into units known as pages,
each typically 4 KB in size. Pages can be mapped to any
location in physical memory, providing flexibility and
optimizing memory utilization. The use of this virtual address
space further adds a layer of abstraction between the
application and physical memory, enhancing the security and
isolation of processes[14].
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Swap Space

Swap space refers to a designated portion of the secondary
storage utilized as virtual memory in a computer system. This
plays an important role in systems that run multiple
applications simultaneously; since when memory resources are
strained, swap space comes into play, moving inactive parts of
the RAM to secondary storage. This action frees up space in
primary memory for other processes, enabling smoother
operation and preventing a potential system crash due to
memory exhaustion.

In the case of Linux, the swap space implementation aligns with
a demand paging system. This means that memory is allocated
only when required. Swap space in Linux can be a swap
partition, which is a distinct area within secondary storage, or
it can take the form of a swap file, which is a standard file that
can be expanded or truncated based on need. The usage of
swap partitions and files is transparent to the user. The Linux
kernel employs the Least Recently Used (LRU) algorithm to
determine which memory pages should be moved to swap space
first. This algorithm effectively prioritizes pages based on their
usage, transferring those that have not been recently used to
swap space[14].

Swap space also plays a significant role in system hibernation.
Before the system enters hibernation, the content of RAM is
stored in the swap space, where it remains persistent even
without power. When the system is resumed, the memory
content is read back from swap space, restoring the system to
its pre-hibernation state[15].

The use of swap space can impact system performance. Since
secondary storage devices are usually slower than primary
memory, heavy reliance on swap space can cause significant
system slowdowns. To mitigate this, Linux allows for the
adjustment of “swappiness”, a parameter that controls the
system’s likeliness to swap memory pages. Adjusting this
setting can balance the use of swap space to maintain system
performance while still preserving the benefits of virtual
memory management[14].
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Page Faults

Page faults are instances in which a process attempts to access
a page that is not currently available in primary memory. This
situation triggers the operating system to swap the necessary
page from secondary storage into primary memory. These are
significant events in memory management, as they determine
how efficiently an operating system utilizes its resources.

They can be broadly categorized into two types: minor and
major. Minor page faults occur when the desired page resides in
memory but isn’t linked to the process that requires it. On the
other hand, a major page fault takes place when the page has to
be loaded from secondary storage, a process that typically takes
more time and resources.

To minimize the occurrence of page faults, memory
management algorithms such as the aforementioned LRU and
the more straightforward clock algorithm are often used. These
algorithms effectively manage the order and priority of memory
pages, helping to ensure that frequently used pages are readily
available in primary memory[1].

Handling page faults involves certain techniques to ensure
smooth operation. One such technique is prefetching, which
anticipates future page requests and proactively loads these
pages into memory. Another approach involves page
compression, where inactive pages are compressed and stored in
memory preemptively. This reduces the likelihood of major
page faults by conserving memory space, allowing more pages
to reside in primary memory[16].
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mmap

mmap is a UNIX system call, used for mapping files or devices
into memory, enabling a variety of tasks like shared memory, file
I/O, and fine-grained memory allocation. Due to its powerful
nature, it is commonly used in applications like databases.

A particularly useful feature of mmap is its ability to create
what is essentially a direct memory mapping between a file and
a region of memory[17]. This connection means that read
operations performed on the mapped memory region directly
correspond to reading the file and vice versa, enhancing
efficiency as the amount of expensive context switches
(compared to i.e. the read or write system calls) can be reduced.

A significant advantage of mmap is its ability to do zero-copy
operations. In practical terms, this means that data can be
accessed directly as if it were positioned in memory, eliminating
the need to copy it from the disk first. This direct memory
access saves time and reduces processing requirements, offering
substantial performance improvements.

This speed improvement does however come with a notable
drawback: It bypasses the file system cache, which can
potentially result in stale data when multiple processes are
reading and writing simultaneously. This bypass may lead to a
scenario where one process modifies data in the mmap region,
and another process that is not monitoring for changes might
remain unaware and continue to work with outdated data[6].
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inotify

inotify is an event-driven notification system of the Linux
kernel, designed to monitor the file system for different events,
such as modifications and accesses, among others. It’s
particularly useful because it can be configured to watch only
some operations on certain files, i.e. only write operations. This
level of control can offer considerable benefits in cases where
there is a need to focus system resources on specific events.

The API also comes with some other advantages; for example,
it reduces overhead and resource use when compared to polling
strategies. Polling is an I/O-heavy approach as it continuously
checks the status of the file system, regardless of whether any
changes have occurred. In contrast, inotify works in a more
event-driven way, where it only takes action when a specific
event actually occurs. This is usually more efficient, reducing
overhead especially where there are infrequent changes to the
file system.

Thanks to these characteristics, inotify is used across many
applications, especially in file synchronization services. In this
use case, the ability to instantly notify the system of file changes
helps in the instant synchronization of files, demonstrating how
critical its role can be in real-time or near real-time systems.
However, as is the case with many system calls, there is a limit
to its scalability. inotify is constrained by a limit on how many
watches can be established; while configurable, this limitation
can pose challenges in systems where there is a high quantity of
files or directories to watch for changes in, and might require
additional management or fallbacks to the more expensive
polling mechanisms for some parts of the system[18].
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Linux Kernel Caching

Disk caching in Linux is a feature that temporarily stores
frequently accessed data in RAM. It is implemented through
the page cache subsystem, and operates based on the principle
of locality. By retaining data close to the CPU where it can be
quickly accessed without expensive disk reads can significantly
reduce overall access time. The data within the cache is also
managed using the LRU algorithm, which removes the least
recently used items from the cache first when space is needed.
Linux also caches file system metadata in specialized structures
known as the dentry and inode caches. This metadata contains
information such as file names, attributes, and locations. The
key benefit of this is that it speeds up the resolution of path
names and file attributes, such as tracking when files were last
changed for polling.

While such caching mechanisms can improve performance, they
also introduce complexities. One such complexity is
maintaining data consistency between the disk and cache
through writebacks; aggressive writebacks, where data is copied
back to disk frequently, can lead to reduced performance, while
excessive delays may risk data loss if the system crashes before
data has been saved.

Another complexity stems from the necessity to release cached
data under memory pressure, known as cache eviction. As
mentioned before, this requires sophisticated algorithms, such
as LRU, to ensure effective utilization of available cache space.
Prioritizing what to keep in cache as the memory pressure
increases directly impacts the overall system performance[1].
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RTT, LAN and WAN

Round-trip time (RTT) represents the time data takes to travel
from a source to a destination and back. It provides a valuable
insight into application latency, and can vary according to many
factors such as network type, system load and physical distance.
Local area networks (LAN) are geographically small networks
characterized by having a low RTT, resulting in a low latency
due to the short distance (typically no more than across an
office or data center) that data needs to travel. As a result of
their small geographical size and isolation, perimeter security is
often applied to such networks, meaning that the LAN is
viewed as a trusted network that doesn’t necessarily require
authentication or encryption between internal systems, resulting
in a potentially lower overhead.

Wide area networks (WAN) on the other hand typically span a
large geographical area, with the internet being an example
that operates on a planetary scale. Due to the physical distance
between source and destination, as well as the number of hops
required for data to reach the destination, these networks
typically have higher RTT and thus latency, and are also
vulnerable to wire-tapping and packet inspection, meaning that
in order to securely transmit data on them, encryption and
authentication is required[19].
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TCP, UDP, TLS and QUIC

TCP (Transmission Control Protocol), UDP (User Datagram
Protocol), and QUIC (Quick UDP Internet Connections) are
three key communication protocols utilized on the internet
today, while TLS serves as a commonly used encryption and
authentication mechanism.

TCP forms the backbone of internet communication today due
to its connection-oriented nature. It ensures the guaranteed
delivery of data packets and their correct order, making it a
highly dependable means for data transmission. Significantly,
TCP includes error checking, allowing the detection and
subsequent retransmission of lost packets. TCP also includes a
congestion control mechanism to manage data transmission
during high traffic. Due to these features and it’s long legacy,
TCP is widely used to power the majority of the web where
reliable, ordered, and error-checked data transmission is
required[20].

UDP is a connectionless protocol that does not make the same
guarantees about the reliability or ordered delivery of data
packets as TCP. This gives UDP a speed advantage over TCP,
resulting in less communication overhead. Although it lacks
TCP’s robustness in handling errors and maintaining data
order, UDP is often used for applications where speed and
latency take are more important than reliability. This includes
online gaming, video calls, and other real-time communication
modes where quick data transmission is crucial even if
temporary packet loss occurs.[21]

TLS is an encryption protocol that intents to secure
communication over a public network like the internet. It uses
both symmetric and asymmetric encryption, and is used for
most internet communication, esp. in combination with HTTP
in the form of HTTPS. It consists of a handshake phase, in
which the parameters necessary to establish a secure connection,
as well as session keys and certificates are exchanged, before
continuing on to the encrypted data transfer phase. Besides this
use as a server authentication (through certificate authorities)
and encryption method, it is also able to authenticate clients
through the use of mutual TLS (mTLS), where both the client
and the server submit a certificate[22].

QUIC, a modern UDP-based transport layer protocol, was
originally created by Google and standardized by the IETF in
2021[23]. It is designed to combine the best qualities of TCP
and UDP; unlike raw UDP, QUIC ensures the reliability of data
transmission and guarantees the ordered delivery of data
packets similarly to TCP, while intending to keep UDP’s speed
advantages. One of QUIC’s headline features is its ability to
reduce connection establishment times, which effectively lowers
initial latency. It achieves this by merging the typically separate
connection and security (TLS) handshakes, reducing the time
taken for a connection to be established. Additionally, QUIC is
designed to prevent the issue of head-of-line blocking, allowing
for the independent delivery of separate data streams. This
means it can handle the delivery of separate data streams
without one stream blocking another, resulting in more efficient
transmission, a feature which is especially important for
applications with lots of concurrent streams[24].
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Delta Synchronization

Delta synchronization is a technique that allows for efficient
synchronization of files between hosts, transferring only those
parts of the file that have undergone changes instead of the
entire file in order to reduce network and I/O overhead. The
most recognized tool that uses this method of synchronization is
rsync, an open-source data synchronization utility.

Figure 2: Design flow chart of WebRsync, showing the messages sent
between and operations done for server and client in a single
synchronization cycle[25]

While there are many applications of such an algorithm, it
typically starts with file block division, dividing the file on the
destination side into fixed-size blocks. For each of these blocks,
a quick albeit weak checksum is calculated, and these
checksums are transferred to the source system.

The source initiates the same checksum calculation process.
These checksums are then compared to those received from the
destination (matching block identification). The outcome of this
comparison allows the source to detect the blocks which have
been changed since the last synchronization.

Once the altered blocks are identified, the source sends the
offset of each block alongside the data of the changed block to
the destination. Upon receiving a block, the destination writes
it to the specific offset in the file. This process results in the
reconstruction of the file with the modifications done at the
source, after which the next synchronization cycle can start[25].
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File Systems in User Space (FUSE)

File Systems in User Space (FUSE) is an API that enables the
creation of custom file systems in the user space, as opposed to
developing them as kernel modules. This reduces the need for
the low-level kernel development skills that are usually
associated with creating new file systems.

The FUSE APIs are available on various platforms; though
mostly deployed on Linux, they can also be found on macOS
and FreeBSD. In FUSE, a user space program registers itself
with the FUSE kernel module and provides callbacks for the file
system operations. A simple read-only FUSE can for example
implement the following callbacks:

The getattr callback is responsible for getting the attributes of
a file. For a real file system, this would include things like the
file’s size, its permissions, when it was last accessed or modified,
and so forth:

stat ic int example_getattr ( const char ∗path , struct s t a t ∗ stbuf ,
struct f u s e _ f i l e _ i n f o ∗ f i ) ;

readdir is used when a process wants to list the files in a
directory. It’s responsible for filling in the entries for that
directory:

stat ic int example_readdir ( const char ∗path , void ∗buf , f u s e _ f i l l _ d i r _ t f i l l e r ,
o f f_t o f f s e t , struct f u s e _ f i l e _ i n f o ∗ f i ,
enum f u s e_readd i r_f l ag s f l a g s ) ;

open is called when a process opens a file. It’s responsible for
checking that the operation is permitted (i.e. the file exists, and
the process has the necessary permissions), and for doing any
necessary setup:

stat ic int example_open ( const char ∗path , struct f u s e _ f i l e _ i n f o ∗ f i ) ;

Finally, the read function is used when a process wants to read
data from a file. It’s responsible for copying the requested data
into the provided buffer:

stat ic int example_read ( const char ∗path , char ∗buf , s i z e_t s i z e , o f f_t o f f s e t , struct f u s e _ f i l e _ i n f o ∗ f i ) ;

These callbacks would then be added to the FUSE operations
struct and passed to fuse_main, which takes care of registering
the operations with the FUSE kernel module and mounts the
FUSE to a directory. Similarly to this, callbacks for handling
writes etc. can be provided to the operation struct for a
read-write capable FUSE[26].

When a user then performs a file system operation on a
mounted FUSE file system, the kernel module forwards the
request to the user space program. This is followed by the user
space program returning a response, which the FUSE kernel
module sends back to the user. As such, FUSE circumvents the
complexity of implementing the file system implementation
directly in the kernel. This increases safety, preventing entire
kernel crashes due to errors within the implementation being
limited to user instead of kernel space:

Figure 3: Structural diagram of FUSE, showing the user space
components handled by the C library and the FUSE library as well as
the kernel components such as the Linux VFS and the FUSE kernel
module[27]

Another benefit of a file system implemented as a FUSE is its
inherent portability. Unlike a file system created as a kernel
module, its interaction with the FUSE module rather than the
kernel itself creates a stronger contract between the two, and
allows shipping the file system as a plain ELF binary instead of
a binary kernel module, which typically need to be built from
source on the target machine unless they are vendored by a
distribution. Despite these benefits of FUSE, there is a
noticeable performance overhead associated with it. This is
largely due to the context switching between the kernel and the
user space that occurs during its operation[28].

FUSE is widely utilized to mount high-level external services as
file systems. For instance, it can be used to mount remote AWS
S3 buckets with s3fs [29] or to mount a remote system’s disk via
Secure Shell (SSH) with SSHFS [30].
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Network Block Device (NBD)

Network Block Device (NBD) is a protocol for connecting to a
remote Linux block device. It typically works by
communicating between a user space-provided server and a
kernel-provided client. Though usable over WAN, it is primarily
designed for LAN or localhost usage. The protocol is divided
into two phases: the handshake and the transmission[31]:

Figure 4: Sequence diagram of the baseline NBD protocol
(simplified), showing the handshake, transmission and disconnect
phases

The NBD protocol involves multiple participants: One or
several clients, a server, and the concept of an export. It starts
with a client establishing a connection with the server. The
server responds by delivering a greeting message containing
various server flags. The client responds by transmitting its own
flags along with the name of an export to use; a single NBD
server can expose multiple exports.

After receiving this, the server sends the size of the export and
other metadata. The client acknowledges this data, completing
the handshake. Post handshake, the client and server exchange
commands and replies. A command can correspond to any of
the basic actions needed to access a block device, such as read,
write or flush. These commands might also contain data such as
a chunk for writing, offsets, and lengths among other elements.
Replies may contain error messages, success status, or data
depending on the reply type.

While powerful, NBD has some limitations. Its maximum
message size is capped at 32 MB[32], and the maximum block
or chunk size supported by the kernel’s NBD client is a mere
4 KB[33]. Thus, it is not the most optimal protocol for WAN
usage, especially in scenarios with high latency.

NBD, being a protocol with a long legacy, comes with some
implementation overhead such as multiple different handshake
versions and legacy features. As a result, it is advisable to only
implement the latest recommended versions and the
foundational feature set when using NBD for a narrow use case.

Despite the simplicity of the protocol, there are certain
scenarios where NBD falls short. Compared to FUSE, it has
limitations when dealing with backing devices that operate
drastically different from random-access storage devices like a
tape drive, since it lacks the ability to work with high-level
abstractions such as files or directories. For example, it does not
support shared access to the same file for multiple clients.
However, this shortcoming can be considered as an advantage
for narrow use cases like memory synchronization, given that it
operates on a block level, where synchronization features may
not be needed or are implemented at a higher layer, and would
present an overhead.
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Virtual Machine Live Migration

Virtual machine live migration involves moving a virtual
machine, its state, and its connected devices from one host to
another, with the intention of reducing disrupted service by
minimizing downtime during the process. Algorithms that
implement this use case can be categorized into two broad
types: pre-copy migration and post-copy migration.
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Pre-Copy

The primary characteristic of pre-copy migration is its
“run-while-copy” nature, meaning that the copying of data from
the source to the destination occurs concurrently while the VM
continues to operate. This method is also applicable in a
generic migration context where other state is being updated.

In the case of a VM, the pre-copy migration procedure starts
with transferring the initial state of a VM’s memory to the
destination host. During this operation, if modifications occur
to any chunks of data, they are flagged as dirty. These dirty
chunks of data are then transferred to the destination until only
a small number remain; this should be an amount small enough
to stay within the allowed maximum downtime criteria. After
this, the VM is suspended at the source, enabling the
synchronization of the remaining chunks of data to the
destination without having to continue tracking dirty chunks.
Once this synchronization process is completed, the VM is
resumed at the destination host.

The pre-copy migration process is reliable, especially in
instances where there might be network disruption during
synchronization. This is because of fact that, at any given point
during migration, the VM is available in full either at the
source or the destination. A limitation to the approach however
is that, if the VM or application changes too many chunks on
the source during migration, it may not be possible to meet the
maximum acceptable downtime criteria. Maximum acceptable
downtime is also inherently restricted by the available
round-trip time (RTT)[34].
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Post-Copy

Post-copy migration is an alternative live migration approach.
While pre-copy migration operates by copying data before the
VM halt, post-copy migration immediately suspends the VM
operation on the source and resumes it on the destination, with
only a minimal subset of the VM’s data.

During this resumed operation, whenever the VM attempts to
access a chunk of data not initially transferred during the move,
a page fault arises. A page fault, in this context, is the type of
interrupt generated when the VM tries to read or write a chunk
that is not currently present on the destination. This causes the
system to retrieve the missing chunk from the source host,
enabling the VM to continue its operations.

The main advantage of post-copy migration is that it eliminates
the necessity of re-transmitting chunks of “dirty” or changed
data before hitting the maximum tolerable downtime. This
process can thus decrease this factor and also reduces the
amount of network traffic between source and destination.

Despite this benefit, post-copy migration could also potentially
lead to extended migration times as a consequence of its
fetch-on-demand model for retrieving chunks. This is because it
is highly sensitive to network latency and round-trip time
(RTT). Unlike the pre-copy model, this also means that the VM
is not available in full on either the source or the destination
during migration, requiring potential recovery solutions if
network connectivity is lost during the process[34].
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Workload Analysis

Recent studies have explored different strategies to determine
the best point in time for virtual machine migration. Even
though these mostly focus on virtual machines, the
methodologies could be adapted for use with generic migration
implementations, too.

One method proposed identifies cyclical workload patterns of
VMs and leverages this to delay migration when it is beneficial.
This is achieved by analyzing recurring patterns that may
unnecessarily postpone VM migration, and then constructing a
model of optimal cycles within which VMs can be migrated. In
the context of VM migration, such cycles could for example be
triggered by a large application’s garbage collector, which
results in numerous changes to VM memory, which could cause
the migration to take longer.

When a migration is proposed, the system verifies whether it is
in an optimal cycle for migration. If it is, the migration
proceeds; if not, the migration is postponed until the next cycle.
The proposed process employs a Bayesian classifier to
distinguish between favorable and unfavorable cycles.

Compared to the alternative, which usually involves waiting for
a significant amount of unchanged chunks to synchronize before
suspending the application, the proposed pattern
recognition-based approach potentially offers substantial
improvements. The study found that this method yielded an
enhancement of up to 74% in terms of downtime and a 43%
reduction concerning the volume of data transferred over the
network[35].
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Streams and Pipelines

Streams and pipelines are fundamental constructs that enable
efficient, sequential processing of large datasets without the
need for loading an entire dataset into memory. They form the
backbone of modular and efficient data processing techniques,
with each concept having its unique characteristics and use
cases.

A stream represents a continuous sequence of data, serving as a
connector between different points in a system. Streams can be
either a source or a destination for data. Examples include files,
network connections, and standard input/output devices and
many others. The power of streams comes from their ability to
process data as it becomes available; this aspect allows for
minimization of memory consumption, making streams
particularly useful for scenarios involving long-running processes
where data is streamed over extended periods of time[36].

Pipelines are a series of data processing stages, where the output
of one stage directly serves as the input to the next. Often,
these stages can run concurrently; this parallel execution can
result in a significant performance improvement due to a higher
degree of concurrency. One of the classic examples of pipelines
is the instruction pipeline in CPUs, where different stages of
instruction execution - fetch, decode, execute, and writeback -
are performed in parallel. This design increases the instruction
throughput of the CPU, allowing it to process multiple
instructions simultaneously at different stages of the pipeline.

Another familiar implementation is observed in UNIX pipes, a
fundamental part of shells such as GNU Bash or POSIX sh.
Here, the output of a command can be piped into another for
further processing[37]; for instance, the results from a curl
command fetching data from an API could be piped into the jq
tool for JSON manipulation.
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Go

Go is a statically typed, compiled open-source programming
language released by Google in 2009. It is typically known for
its simplicity, and was developed to address the unsuitability of
many traditional languages for modern distributed systems
development. Thanks to input from many people affiliated with
UNIX, such as Rob Pike and Ken Thompson, as well as good
support for concurrency, Go is particularly popular for the
development of cloud services and other types of network
programming. The headline feature of Go is “Goroutines”, a
lightweight feature that allows for concurrent function execution
similarly to threads, but is more scalable to support millions of
Goroutines per program. Synchronization between different
Goroutines is provided by using channels, which are type- and
concurrency-safe conduits for data[38].
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gRPC and Protocol Buffers

gRPC is an open-source, high-performance remote procedure
call (RPC) framework developed by Google in 2015. It is
recognized for its cross-platform compatibility, supporting a
variety of languages including Go, Rust, JavaScript and more.
gRPC is being maintained by the Cloud Native Computing
Foundation (CNCF), which ensures vendor neutrality.

One of the notable features of the gRPC is its usage of HTTP/2
as the transport protocol. This allows it to benefit from
features of HTTP/2 such as header compression, which
minimizes bandwidth usage, and request multiplexing, enabling
multiple requests to be sent concurrently over a single
connection. In addition to HTTP/2, gRPC utilizes Protocol
Buffers (Protobuf), more specifically proto3, as the Interface
Definition Language (IDL) and wire format. Protobuf is a
compact, high-performance, and language-neutral mechanism
for data serialization. This makes it preferable over the more
dynamic, but more verbose and slower JSON format often used
in REST APIs.

One of the strengths of the gRPC framework is its support for
various types of RPCs. Not only does it support unary RPCs
where the client sends a single request to the server and receives
a single response in return, mirroring the functionality of a
traditional function call, but also server-streaming RPCs,
wherein the client sends a request, and the server responds with
a stream of messages. Conversely, in client-streaming RPCs, the
client sends a stream of messages to a server in response to a
request. It also supports bidirectional RPCs, wherein both
client and server can send messages to each other. What
distinguishes gRPC is its pluggable structure that allows for
added functionalities such as load balancing, tracing, health
checking, and authentication, which make it a comprehensive
solution for developing distributed systems[39].
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fRPC and Polyglot

fRPC is an open-source RPC framework released by Loophole
labs in 2022. It is proto3-compatible, meaning that it can be
used as a drop-in replacement for gRPC, promising better
performance characteristics. A unique feature is its ability to
stop the RPC system to retrieve an underlying connection,
which makes it possible to re-use connections for different
purposes[40]. Internally, it uses Frisbee as it’s messaging
framework to implement the request-response semantics[41],
and Polyglot, a high-performance serialization framework, as
it’s Protobuf equivalent. Polyglot achieves a similar goal as
Protobuf, which is to encode data structures in a
platform-independent way, but does so with less legacy code
and a simpler wire format. It is also language-independent,
with implementations for Go, Rust and TypeScript[42].

27



Redis

Redis (Remote Dictionary Server) is an in-memory data
structure store, primarily utilized as an ephemeral database,
cache, and message broker introduced by Salvatore Sanfilippo in
2009. Compared to other key-value stores and NoSQL
databases, Redis supports a multitude of data structures,
including lists, sets, hashes, and bitmaps, making it a good
choice for caching or storing data that does not fit well into a
traditional SQL architecture[43].

One of the primary reasons for Redis’s speed is its usage of
in-memory data storage rather than on disk, enabling very
low-latency reads and writes. While the primary use case of
Redis is in in-memory operations, it also supports persistence
by flushing data to disk. This feature broadens the use cases for
Redis, allowing it to handle applications that require
longer-term data storage in addition to a caching mechanism.
In addition to it being mostly in-memory, Redis also supports
quick concurrent reads/writes thanks to its non-blocking I/O
model, making it a good choice for systems that require the
store to be available to many workers or clients.

Redis also includes a publish-subscribe (pub-sub) system. This
enables it to function as a message broker, where messages are
published to channels and delivered to all the subscribers
interested in those channels. This makes it a particularly
compelling choice for systems that require both caching and a
memory broker, such as queue systems[44].
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S3 and Minio

S3 is a scalable object storage service, especially designed for
large-scale applications with frequent reads and writes. It is one
of the prominent services offered by Amazon Web Services
(AWS). S3’s design allows for global distribution, which means
the data can be stored across multiple geographically diverse
servers. This permits fast access times from virtually any
location on the globe, which is important for globally
distributed services or applications with users spread across
different continents.

It offers a variety of storage classes for different needs, i.e. for
whether the requirement is for frequent data access, infrequent
data retrieval, or long-term archival. This ensures that it can
meet a wide array of demands through the same HTTP API. S3
also comes equipped with comprehensive security features,
including authentication and authorization mechanisms. Access
to objects and directories stored in S3 is done with HTTP[45].

Minio is an open-source storage server that is compatible with
S3’s API. Due to it being written in the Go programming
language, Minio is very lightweight and ships as single static
binary. Unlike with AWS S3, which is only offered as a service,
Minio’s open-source nature means that users have the ability to
view, modify, and distribute Minio’s source code, allowing
community-driven development and innovation.

The main feature of Minio is its suitability for on-premises
hosting, making it a good option for organizations with specific
security regulations, those preferring to maintain direct control
over their data and developers preferring to work on the local
system. It also supports horizontal scalability, designed to
distribute large quantities of data across multiple nodes,
meaning that it can be used in large-scale deployments similarly
to AWS’s hosted S3[46].
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Cassandra and ScylllaDB

Apache Cassandra is a wide-column NoSQL database tailored
for large-scale, distributed data management tasks. It is known
for its scalability, designed to handle large amounts of data
spread across numerous servers. Unique to Cassandra is the
absence of a single point of failure, which is critical for systems
requiring high uptime guarantees. Cassandra’s consistency
model is adjustable according to needs, ranging from eventual
to strong consistency. It does not require master nodes due to
its usage of a peer-to-peer protocol and a distributed hash ring
design; these design choices eradicate the bottlenecks and
failure risks associated with other archictures[47].

Despite these capabilities, Cassandra does come with certain
limitations. Under heavy load, it demonstrates high latency,
which can negatively affect performance. Besides this, it also
demands complex configuration and fine-tuning to perform
optimally. In response to the perceived shortcomings of
Cassandra, ScyllaDB was released in 2015. It shares design
principles with Cassandra, such as compatibility with
Cassandra’s API and data model, but has architectural
differences intended to overcome Cassandra’s limitations. It’s
primarily written in C++, contrary to Cassandra’s Java-based
code. This contributes to ScyllaDB’s shared-nothing
architecture, a design that aims to minimize contention and
enhance performance.

Figure 5: 90- and 99-percentile latency measurements of UPDATE
queries for different load levels and different versions of Cassandra
and ScyllaDB[48]

ScyllaDB is engineered to address one particular shortcoming of
Cassandra: Latency, specifically the 99th percentile latency that
impacts system reliability and predictability. ScyllaDB’s design
improvements and performance gains over Cassandra have been
verified by benchmarking studies[48].
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Pull-Based Synchronization With userfaultfd

userfaultfd is a technology that allows for the implementation
of a post-copy migration scenario. In this setup, a memory
region is created on the destination host. When the migrated
application starts to read from this remote region after it was
resumed, it triggers a page fault, which can be resolved by
fetching the relevant offset from the remote.

Typically, page faults are resolved by the kernel. While this
makes sense for use cases where they can be resolved by loading
a local resource into memory, here page faults are handled using
a user space program instead. Traditionally, this is possible by
registering a signal handler for the SIGSEGV signal, and then
responding to the fault from the program. This however is a
fairly complicated and inefficient process; instead, the
userfaultfd system can be used to register a page fault handler
directly without having to go through a signal first.

With userfaultfd , the memory region that page faults should be
handled for is registered first, and a handler is started in user
space, where it fetches the missing offsets from the source host
in-demand whenever a page fault occurs. This handler is
connected to the registered region’s userfaultfd API through a
file descriptor. To enable sharing the file descriptor between
processes, a UNIX socket can be used.
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Push-Based Synchronization With mmap and Hashing

As mentioned before, mmap allows mapping a memory region
to a file. Similarly to how a region registered with userfaultfd
can be used to store the state or application which is being
migrated, mmap can be used to do the same. Since the region is
linked to a file, when writes happen to the region, they will also
be written to the corresponding file. If it is possible to detect
these writes and copy the changes to the destination host, this
setup can be used to implement a pre-copy migration system.

While writes done to a mmaped region are eventually being
written back to the underlying file, this is not the case
immediately, since the kernel still uses caching on a mmaped
region in order to speed up reads/writes. As a workaround, the
msync syscall can be used, which works similarly to the sync
syscall by flushing any remaining changes from the cache to the
backing file.

In order to actually detect the changes to the underlying file, an
obvious solution might be to use inotify . This however isn’t
possible for mmaped files, as the file corresponds to a memory
region, and traditional write etc. events are not emitted.
Instead of using inotify or a similar event-based system to
track changes, a polling system can be used instead. This has
drawbacks, namely latency and computational load, both of
which the implementation intents to address, but can’t be
worked around completely.
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Push-Pull Synchronization with FUSE

Using a file system in user space (FUSE) can serve as the basis
for implementing either a pre- or a post-copy live migration
system. Similarly to the file-based pre-copy approach, mmap
can be used to map the migrated resource’s memory region to a
file. Instead of storing this file on the system’s default file
system however, a custom file system is implemented, which
allows removing the expensive polling system. Since a custom
file system allows catching reads (for a post-copy migration
scenario, were reads would be responded to by fetching from the
remote), writes (for a pre-copy scenario, where writes would be
forwarded to the destination) and other operations by the
kernel, the use of inotify is no longer required.

While implementing such a custom file system in the kernel is
possible, it is a complex task that requires writing a custom
kernel module, using a supported language by the kernel
(mostly C or a limited subset of Rust), and in general having
significant knowledge of kernel internals. Furthermore, since
networking would be required to resolve reads/forward writes
from/to the source/destination host, a job that would usually
be done by user space applications, a user space component
would probably also need to be developed in order to support
this part of the synchronization system. Instead of
implementing it in the kernel, the FUSE API can be used. This
makes it possible to write the entire file system in user space,
can significantly reduce the complexity of this approach.
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Mounts with NBD

Another mmap-based approach for both pre- and post-copy
migration is to mmap a block device instead of a file. This
block device can be provided through a variety of APIs, most
notably NBD.

By providing a NBD device through the kernel’s NBD client,
the device can be connected to a remote NBD server, which
hosts the resource as a memory region. Any reads/writes
from/to the mmaped memory region are resolved by the NBD
device, which forwards it to the client, which then resolves them
using the remote server; as such, this approach is less so a
synchronization (as the memory region is never actually copied
to the destination host), but rather a mount of a remote
memory region over the NBD protocol.

From an initial overview, the biggest benefit of mmaping such a
block device instead of a file on a custom file system is the
reduced complexity. For the narrow use case of memory
synchronization, not all the features provided by a full file
system are required, which means that the implementation of a
NBD server and client, as well as the accompanying protocols,
is significantly less complex and can also reduce the overhead of
the system as a whole.
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Overview

This approach also leverages mmap and NBD to handle reads
and writes to the resource’s memory region, similarly to the
prior approaches, but differs from mounts with NBD in a few
significant ways.

Usually, the NBD server and client don’t run on the same
system, but are instead separated over a network. This network
commonly a LAN, and the NBD protocol was designed to
access a remote hard drive in this network environment. As a
result of the protocol being designed for these low-latency,
high-throughput characteristics, there are a few limitations of
the NBD protocol when it is being used in a WAN, an
environment that can not guarantee the characteristics.

While most wire security issues with the protocol can be worked
around by simply using (m)TLS, the big issue of its latency
sensitivity remains. Usually, individual blocks would only be
fetched as they are being accessed, resulting in a read latency
per block that is at least the RTT. In order to work around this
issue, instead of directly connecting a NBD client to a remote
NBD server, a layer of indirection is added. This component
consists of both a client and a server, both of which are running
on the local system instead of being split into a separate remote
and local component (“Direct Mount”) and is implemented as
part of the r3map library (remote mmap)[49].

By combining the NBD server and client into this reusable unit,
the server can be connected to a new backend component with
a protocol that is better suited for WAN usage than NBD. This
also allows the implementation of asynchronous background
push/pull strategies instead of simply directly writing to/from
the network (“Managed Mounts”). The simplest form of the
mount API is the direct mount API; it simply swaps out NBD
for a transport-independent RPC framework, but does not do
additional optimizations. It has two basic actors: The client
and the server. Only unidirectional RPCs from the client to the
server are required for this to work, and the required backend
service’s interface is simple:

type BackendRemote struct {
ReadAt func ( context context . Context , l ength int , o f f int64 ) ( r ReadAtResponse , e r r error )
WriteAt func ( context context . Context , p [ ] byte , o f f int64 ) (n int , e r r error )
S i z e func ( context context . Context ) ( int64 , error )
Sync func ( context context . Context ) error

}

The protocol is stateless, as there is only a simple remote reader
and writer interface; there are no distinct protocol phases,
either.
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Chunking

An additional issue that was mentioned before that this
approach can approve upon is better chunking support. While
it is possible to specify the NBD protocol’s chunk size by
configuring the NBD client and server, this is limited to only
4 KB in the case of Linux’s implementation. If the RTT
between the backend and the NBD server however is large, it
might be preferable to use a much larger chunk size; this used
to not be possible by using NBD directly, but thanks to this
layer of indirection it can be implemented.

Similarly to the Linux kernel’s NBD client, backends themselves
might also have constraints that prevent them from working
without a specific chunk size, or otherwise require aligned reads.
This is for example the case for tape drives, where reads and
writes must occur with a fixed block size and on aligned offsets;
furthermore, these linear storage devices work the best if
chunks are multiple MB instead of KB.

It is possible to do this chunking in two places: On the mount
API’s side (meaning the NBD server), or on the (potentially
remote) backend’s side. While this will be discussed further in
the results section, chunking on the backend’s side is usually
preferred as doing it client-side can significantly increase latency
due to a read being required if a non-aligned write occurs,
esp. in the case of a WAN deployment with high RTT.

But even if the backend does not require any kind of chunking
to be accessed, i.e. if it is a remote file, it might still make sense
to limit the maximum supported message size between the
NBD server and the backend to prevent DoS attacks that would
require the backend to allocate large chunks of memory.
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Background Pull and Push

A pre-copy migration system for the managed API is realized in
the form of preemptive pulls that run asynchronously in the
background. In order to optimize for spatial locality, a pull
priority heuristic is introduced; this is used to determine the
order in which chunks should be pulled. Many applications and
other resources commonly access certain parts of their memory
first, so if a resource should be accessible locally as quickly as
possible (so that reads go to the local cache filled by the
preemptive pulls, instead of having to wait at least one RTT to
fetch it from the remote), knowing this access pattern and
fetching these sections first can improve latency and throughput
significantly.

And example of this can be data that consists of one or multiple
headers followed by raw data. If this structure is known, rather
than fetching everything linearly in the background, the headers
can be fetched first in order to allow for i.e. metadata to be
displayed before the rest of the data has been fetched. Similarly
so, if a file system is being synchronized, and the super blocks
of a file system are being stored in a known pattern or known
fixed locations, these can be pulled first, significantly speeding
up operations such as directory listings that don’t require the
actual inode’s data to be available.

Post-copy migration conversely is implemented using
asynchronous background push. This push system is started in
parallel with the pull system. It keeps track of which chunks
were written to, de-duplicates remote writes, and periodically
writes back these dirty chunks to the remote backend. This can
significantly improve write performance compared to forwarding
writes directly to the remote by being able to catch multiple
writes without having to block for at least the RTT until the
remote write has finished before continuing to the next write.

For the managed mount API, the pre- and post-copy live
migration paradigms are combined to form a hybrid solution.
Due to reasons elaborated on in more detail in the discussion
section, the managed mount API however is primarily intended
for efficiently reading from a remote resource and synching back
changes eventually, rather than migrating a resource between
two hosts. For the migration use case, the migration API,
which will be introduced in the following section, provides a
better solution by building on similar concepts as the managed
mounts API.
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Overview

Similarly to the managed mount API, the migration API tracks
changes to the memory of the resource using NBD. As
mentioned before however, the managed mount API is not
optimized for the migration use case, but rather for efficiently
accessing a remote resource. For live migration, one metric is
very important: maximum acceptable downtime. This refers to
the time that an application, VM etc. must be suspended or
otherwise prevented from writing to or reading from the
resource that is being synchronized; the higher this value is, the
more noticeable the downtime becomes.

To improve on this the pull-based migration API, the migration
process is split into two distinct phases. This is required due
the constraint mentioned earlier; the mount API does not allow
for safe concurrent access of a remote resource by two readers or
writers at the same time. This poses a significant problem for
the migration scenario, as the app that is writing to the source
device would need to be suspended before the transfer could
even begin, as starting the destination node would already
violate the single-reader, single-writer constraint of the mount
API. Furthermore, this adds significant latency, and is
complicated further by the backend for the managed mount
API not exposing a block itself but rather just serving as a
remote that can be mounted. The migration API on the other
hand doesn’t have this hierarchical system; both the source and
destination are peers that expose block devices on either end.
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Migration Protocol and Critical Phases

The migration protocol that allows for this defines two new
actors: The seeder and the leecher. A seeder represents a
resource that can be migrated from or a host that exposes a
resource, while the leecher represents a client that intents to
migrate a resource to itself. The protocol starts by running an
application with the application’s state on the region mmaped
to the seeder’s block device, similarly to the managed mount
API. Once a leecher connects to the seeder, the seeder starts
tracking any writes to its mount, effectively keeping a list of
dirty chunks. Once tracking has started, the leecher starts
pulling chunks from the seeder to its local cache. After it has
received a satisfactory level of locally available chunks, it asks
the seeder to finalize. This then causes the seeder to suspend
the app accessing the memory region on its block device,
msync/flushes it, and returns a list of chunks that were changed
between the point where it started tracking, and the flush has
occurred. Upon receiving this list, the leecher marks these
chunks are remote, immediately resumes the application (which
is now accessing the leecher’s block device), and queues the
dirty chunks to be pulled in the background.

Figure 6: Sequence diagram of the migration protocol (simplified),
showing the two protocol phases between the application that is being
migrated, the seeder and the leecher components

By splitting the migration into these two distinct phases, the
overhead of having to start the device does not count towards
downtime, and additional app initialization that doesn’t depend
on the app’s state (i.e. memory allocation, connecting to
databases etc.) can happen before the application needs to be
suspended.

This combines both the pre-copy algorithm (by pulling the
chunks from the seeder ahead of time) and the post-copy
algorithm (by resolving dirty chunks from the seeder after the
VM has been migrated) into one coherent protocol. As a result
the maximum tolerable downtime can be drastically reduced,
and dirty chunks don’t need to be re-transmitted multiple times.
Effectively, it allows dropping this downtime to the time it
takes to msync the seeder’s app state, the RTT and, if they are
being accessed immediately, how long it takes to fetch the
chunks that were written in between the start of the tracking
and finalization phases. The migration API can use the same
preemptive pull system as the managed mount API and benefit
from its optimizations, but does not use the background push
system.

An interesting question to ask with this two-step migration API
is when to start the finalization step. The finalization phase in
the protocol is critical, and it is hard or impossible to recover
from depending on the specific implementation. The
synchronization itself could be safely recovered from by simply
calling Finalize multiple times to restart it. But since Finalize
needs to return a list of dirty chunks, it requires the app on the
seeder to be suspended before Finalize can return, an operation
that might not be idempotent.
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Registration and Handlers

By listening to page faults, it is possible to know if a process
wants to access a specific offset of memory that is not yet
available. As mentioned before, this event can be used to then
fetch this chunk of memory from the remote, mapping it to the
offset on which the page fault occurred, thus effectively only
fetching data when it is required. Instead of registering signal
handlers, can use the userfaultfd system introduced with Linux
4.3[50] can also be used to handle these faults in user space in a
more idiomatic way.

In the Go implementation created for this thesis,
userfaultfd−go[51], userfaultfd works by first creating a region
of memory, e.g. by using mmap, which is then registered with
the userfaultfd API:

// Creat ing the ` u s e r f a u l t f d ` API
uf fd , _, errno := s y s c a l l . S y s c a l l ( cons tant s . NR_userfaultfd , 0 , 0 , 0)

uf fd ioAPI := cons tant s . NewUffdioAPI (
cons tant s .UFFD_API,
0 ,

)
// . . .

// R e g i s t e r i n g a reg ion
u f f d i o R e g i s t e r := cons tant s . NewUffdioRegister (

cons tant s . CULong( s t a r t ) ,
cons tant s . CULong( l ) ,
cons tant s .UFFDIO_REGISTER_MODE_MISSING,

)
// . . .
s y s c a l l . S y s c a l l (

s y s c a l l .SYS_IOCTL,
uf fd ,
cons tant s .UFFDIO_REGISTER,
uintptr ( unsa fe . Po inter (& u f f d i o R e g i s t e r ) )

)

This is abstracted into a single
Register(length int) ([] byte, UFFD, uintptr, error) function.
Once this region has been registered, the userfaultfd API’s file
descriptor and the offset is passed over a UNIX socket, where it
can then be received by the handler. The handler itself receives
the address that has triggered the page fault by polling the
transferred file descriptor, which is then responded to by
fetching the relevant chunk from a provided reader and sending
it to the faulting memory region over the same socket. Similarly
to the registration API, this is also wrapped into a reusable
func Handle(uffd UFFD, start uintptr, src io .ReaderAt) error
function.
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userfaultfd Backends

Thanks to userfaultfd being mostly useful for post-copy
migration, the backend can be simplified to a simple pull-only
reader interface
(ReadAt(p []byte, off int64) (n int , err error)). This means
that almost any io .ReaderAt can be used to provide chunks to
a userfaultfd -registered memory region, and access to this
reader is guaranteed to be aligned to system’s page size, which
is typically 4 KB. By having this simple backend interface, and
thus only requiring read-only access, it is possible to implement
the migration backend in many ways. A simple backend can for
example return a pattern to the memory region:

func ( a abcReader ) ReadAt (p [ ] byte , o f f int64 ) (n int , e r r error ) {
n = copy (p , bytes . Repeat ( [ ] byte{ 'A ' + byte ( o f f %20)} , len (p ) ) )

return n , ni l
}

In Go specifically, many objects can be exposed as an
io .ReaderAt, including a file. This makes it possible to simply
pass in any file as a backend, essentially mimicking a call to
mmap with MAP_SHARED:

f , e r r := os . OpenFile (∗ f i l e , os .O_RDONLY, os . ModePerm)
b , uf fd , s t a r t , e r r := mapper . Reg i s t e r ( int ( s . S i z e ( ) ) )
mapper . Handle ( uf fd , s t a r t , f )

Similarly so, a remote file, i.e. one that is being stored in S3,
can be used as a userfaultfd backend as well; here, HTTP range
requests allow for fetching only the chunks that are being
required by the application accessing the registered memory
region, effectively making it possible to map a remote S3 object
into memory:

// . . .
f , e r r := mc . GetObject ( ctx , ∗s3BucketName , ∗s3ObjectName , minio . GetObjectOptions {})
b , uf fd , s t a r t , e r r := mapper . Reg i s t e r ( int ( s . S i z e ( ) ) )
mapper . Handle ( uf fd , s t a r t , f )
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Caching Restrictions

As mentioned earlier, this approach uses mmap to map a
memory region to a file. By default, however, mmap doesn’t
write back changes to memory; instead, it simply makes the
backing file available as a memory region, keeping changes to
the region in memory, no matter whether the file was opened as
read-only or read-writable. To work around this, Linux provides
the MAP_SHARED flag; this tells the kernel to eventually
write back changes to the memory region to the corresponding
regions of the backing file.

Linux caches read to the backing file similarly to how it does if
read etc. are being used, meaning that only the first page fault
would be responded to by reading from disk; this means that
any future changes to the backing file would not be represented
in the mmaped region, similarly to how userfaultfd handles it.
The same applies to writes, meaning that in the same way that
files need to be synced in order for them to be flushed to disk,
mmaped regions need to be msynced in order to flush changes
to the backing file. This is particularly important for a memory
use case, since reading from the backing file without flushing
first would result in the synchronization of potentially stale
data, and is different to how traditional file synchronization can
handle this use case, where the Linux file cache would respond
with the changes if the file is read from disk even if sync was not
called beforehand. For file I/O, it is possible to skip the kernel
cache and read/write directly from/to the disk by passing the
O_DIRECT flag to open, but this flag is ignored by mmap.
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Detecting File Changes

In order to actually watch for changes, at first glance, the
obvious choice would be to use inotify , which would allow the
registration of write or sync event handlers to catch writes to
the memory region by registering them on the backing file. As
mentioned earlier however, Linux doesn’t emit these events on
mmaped files, so an alternative must be used; the best option
here is to instead poll for either attribute changes (i.e. the “Last
Modified” attribute of the backing file), or by continuously
hashing the file to check if it has changed. Hashing continuously
with this polling method can have significant downsides,
especially in a migration scenario, where it raises the
guaranteed minimum latency by having to wait for at least the
next polling cycle. Hashing the entire file is also an I/O- and
CPU-intensive process, because in order to compute the hash,
the entire file needs to be read at some point. Within the
context of the file-based synchronization approach however, it is
the only option available.

To speed up the process of hashing, instead of hashing the
entire file, it is possible to hash individual chunks of the file, in
effect implementing a delta synchronization algorithm. This can
be implemented by opening the file multiple times, hashing
individual offsets using each of the opened files, and aggregating
the chunks that have been changed. When picking algorithms
for this chunk-based hashing algorithm, two metrics are of
relevance: the algorithm’s throughput with which it can
calculate hashes, and the prevalence of hash collisions, where
two different inputs produce the same hashes, leading to a
chunk change not being detected. Furthermore, if the
underlying algorithm is CPU- and not I/O-bound, using
multiple open files can increase throughput substantially by
allowing for better concurrent processing. Not only does this
decrease the time spent on each individual hashing iteration of
the polling process, but dividing the file into smaller chunks
that all have their own hashes to compare with the remote’s
hashes can also decrease the amount of network traffic that is
required to synchronize the changes, since a small change in the
backing file leads to the transfer of a smaller chunk.
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Synchronization Protocol

The delta synchronization protocol for this approach is similar
to the one used by rsync, but simplified. It supports
synchronizing multiple files at the same time by using the file
names as IDs, and also supports a central forwarding hub
instead of requiring peer-to-peer connectivity between all hosts,
which also reduces network traffic since this central hub could
also be used to forward one stream to all other peers instead of
having to send it multiple times. The protocol defines three
actors: The multiplexer, file advertiser and file receiver.
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Multiplexer Hub

The multiplexer hub accepts mTLS connections from peers.
When a peer connects, the client certificate is parsed to read the
common name, which is then being used as the synchronization
ID. The multiplexer spawns a Goroutine to allow for more peers
to connection. In the Goroutine, it reads the type of the peer.
If the type is src−control, it starts by reading a file name from
the connection, and registers the connection as the one
providing a file with this name, after which it broadcasts the file
as now being available. For the dst−control peer type, it listens
to the broadcasted files from the src−control peers, and relays
and newly advertised and previously registered file names to the
dst−control peers so that it can start receiving them:

case ” src−c o n t r o l ” :
// Decoding the f i l e name
f i l e := ””
u t i l s . DecodeJSONFixedLength ( conn , &f i l e )
// . . .

syncerSrcControlConns [ f i l e ] = conn

syncerSrcContro lConnsBroadcaster . Broadcast ( f i l e )
// . . .

case ” dst−c o n t r o l ” :
var wg sync . WaitGroup
wg . Add(1)

go func ( ) {
// Sub s c r i p t i on to send a l l f u t u r e f i l e names
l := syncerSrcContro lConnsBroadcaster . L i s t e n e r (0 )

for f i l e := range l .Ch( ) {
u t i l s . EncodeJSONFixedLength ( conn , f i l e )
// . . .

}
}( )

// Sending the p r e v i o u s l y known f i l e names
for f i l e := range syncerSrcControlConns {

u t i l s . EncodeJSONFixedLength ( conn , f i l e )
// . . .

}

wg . Wait ( )

For the dst type, the multiplexer hub decodes a file name from
the connection, looks for a corresponding src−control peer, and
if it has found a matching one, it creates and sends a new ID for
this connection to the src−control peer. After this, it waits
until a src−control peer has connected to the hub with this ID
as well as a new src−data peer by listening for broadcasts of
src−data peer IDs. After this has occurred, it spawns two new
Goroutines that copy data to and from this newly created
synchronization connection and the connection of the dst peer,
effectively relaying all packets between the two. For the
src−data peer type, it decodes the ID for the peer, and
broadcasts the ID, which allows the dst peer to continue
operating.
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File Advertisement and Receiver

The file advertisement system connects to the multiplexer hub
and registers itself a src−control peer, after which it sends the
advertised file name. It starts a loop that handles dst peer
types, which, as mentioned earlier, send an ID. Once such an ID
is received, it spawns a new Goroutine, which connects to the
hub again and registers itself as a src−data peer, and sends the
ID it has received earlier to allow connecting it to the matching
dst peer. After this initial handshake is complete, the main
synchronization loop is started, which initiates the file
transmission to the dst peer through the multiplexer hub. In
order to allow for termination, it checks if a flag has been set by
a context cancellation which case it returns. If this is not the
case, it waits for the specified polling interval, after which it
restarts the transmission.

The file receiver also connects to the multiplexer hub, this time
registering itself as a dst−control peer. After it has received a
file name from the multiplexer hub, it connects to the
multiplexer hub again - this time registering itself as a dst peer,
which creates leading directories, opens up the destination file
and registers itself. The file name is then sent to the
multiplexer again, causing it to look for a peer that advertises
the requested file. If such a peer is found, it starts the file
receiver process in a loop, exiting only once the file has been
completely synchronized.
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File Transmission

This component does the actual transmission in each iteration
of the delta synchronization algorithm. It receives the remote
hashes from the multiplexer hub, calculates the matching local
hashes and compares them, which it sends the hashes that don’t
match back to the file receiver via the multiplexer hub:

// Rece iv ing remote hashes
remoteHashes := [ ] string {}
u t i l s . DecodeJSONFixedLength ( conn , &remoteHashes )
// . . .

// C a l c u l a t i n g the hashes
l oca lHashes , cu to f f , e r r := GetHashesForBlocks ( p a r a l l e l , path , b l o c k s i z e )

// Comparing the hashes
blocksToSend := [ ] int64 {}
for i , l oca lHash := range l o ca lHashes {

// . . .
i f l oca lHash != remoteHashes [ i ] {

blocksToSend = append( blocksToSend , j )

continue
}

}

// Sending the non−matching hashes
u t i l s . EncodeJSONFixedLength ( conn , blocksToSend )

If the remote has sent fewer hashes than were calculated locally,
it asks the remote to truncate its file to the size of the local file
that is being synchronized, after which it sends the updated
data for the file in the order that the changed hashes were sent.
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Hash Calculation

The hash calculation implements the concurrent hashing of
both the file transmitter and receiver. It uses a semaphore to
limit the amount of concurrent access to the file that is being
hashed, and a wait group to detect that the calculation has
finished. Worker Goroutines acquire a lock of this semaphore
and calculate a CRC32 hash, which is a weak but fast hashing
algorithm. For easier transmission, the hashes are hex-encoded
and collected:

// The l o c k and semaphore
var wg sync . WaitGroup
wg . Add( int ( b locks ) )

l o ck := semaphore . NewWeighted ( p a r a l l e l )

// . . .

// Concurrent hash c a l c u l a t i o n
for i := int64 ( 0 ) ; i < b locks ; i++ {

j := i

go ca l cu la teHash ( j )
}
wg . Wait ( )
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File Reception

This is the receiving component of one delta synchronization
iteration. It starts by calculating hashes for the existing local
copy of the file, which it then sends to the remote before it waits
to receive the remote’s hashes and potential truncation request:

// Local hash c a l c u l a t i o n
l oca lHashes , _, e r r := GetHashesForBlocks ( p a r a l l e l , path , b l o c k s i z e )
// Sending the hashes to the remote
// Rece iv ing the remote hashes and the t runca t i on r e que s t
blocksToFetch := [ ] int64 {}
u t i l s . DecodeJSONFixedLength ( conn , &blocksToFetch )
// . . .
c u t o f f := int64 (0 )
u t i l s . DecodeJSONFixedLength ( conn , &c u t o f f )

If the remote detected that the file needs to be cleared (by
sending a negative cutoff value), the receiver truncates the file;
similarly so, if it has detected that the file has grown or shrunk
since the last synchronization cycle, it shortens or extends it,
after which the chunks are read from the connection and
written to the local file.
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FUSE Implementation in Go

Implementing a FUSE in Go can be split into two separate
tasks: Creating a backend for a file abstraction API and
creating an adapter between this API and a FUSE library.

Developing a backend for a file system abstraction API such as
afero .Fs instead of implementing it to work with FUSE
bindings directly offers several advantages. This layer of
indirection allows splitting the FUSE implementation from the
actual inode structure of the system, which makes it unit
testable[52]. This is a high priority due to the complexities and
edge cases involved with creating a file system. A standard API
also offers the ability to implement things such as caching by
simply nesting multiple afero .Fs interfaces, and the required
interface is rather minimal[53]:

type Fs interface {
Create (name string ) ( F i l e , error )
Mkdir (name string , perm os . FileMode ) error
MkdirAll ( path string , perm os . FileMode ) error
Open(name string ) ( F i l e , error )
OpenFile (name string , f l a g int , perm os . FileMode ) ( F i l e , error )
Remove(name string ) error
RemoveAll ( path string ) error
Rename( oldname , newname string ) error
Stat (name string ) ( os . F i l e I n f o , error )
Name( ) string
Chmod(name string , mode os . FileMode ) error
Chown(name string , uid , g id int ) error
Chtimes (name string , atime time . Time , mtime time . Time) error

}

The Simple Tape File System (STFS) project[54] has shown
that by using this abstraction layer, seemingly incompatible,
non-linear backends can still be mapped to a file system. The
project is backed by a tape drive, which is inherently
append-only and optimized for linear access. Thanks to the
inclusion of an on-disk index and various optimization methods,
the resulting file system was still performant enough for
standard use, while also supporting most of the features
required by the average user such as symlinks, file updates and
more.

By using a project like sile-fystem[55], it is also possible to use
any afero .Fs file system as a FUSE backend; this can
significantly reduce the required implementation overhead, as it
doesn’t require writing a custom adapter:

// Creat ing the f i l e system
s e rve := f i l e s y s t e m . NewFileSystem (

a f e r o . NewOsFs ( ) , // a f e ro . Fs implementat ion here , f o l l o w e d by c o n f i g u r a t i o n
)
// Mounting the f i l e system
f u s e . Mount( v ipe r . GetStr ing ( mountpoint ) , serve , c f g )

While the FUSE approach to synchronization is interesting,
even with these available libraries the required overhead of
implementing it (as shown by prior projects like STFS) as well
as other factors that will be mentioned later led to this
approach not being pursued further.
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Overview

Due to a lack of existing, lean and maintained NBD libraries for
Go, a custom pure Go NBD library was implemented[56]. Most
NBD libraries also only provide a server and not the client
component, but both are needed for the NBD-/mount-based
migration approach to work. By not having to rely on CGo or a
pre-existing NBD library like nbdkit, this custom library can
also skip a significant amount of the overhead that is typically
associated with C interoperability, particularly in the context of
concurrency in Go with CGo[57].
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Server

The NBD server is implemented completely in user space, and
there are no kernel components involved. The backend interface
that is expected by the server is very simple and only requires
four methods to be implemented; ReadAt, WriteAt, Size and
Sync:

type Backend interface {
ReadAt (p [ ] byte , o f f int64 ) (n int , e r r error )
WriteAt (p [ ] byte , o f f int64 ) (n int , e r r error )
S i z e ( ) ( int64 , error )
Sync ( ) error

}

The key difference between this backend design and the one
used for userfaultfd−go is that it also supports writes and
other operations that would typically be expected for a
complete block device, such as flushing data with Sync(). An
example implementation of this backend is the file backend;
since a file is conceptually similar to a block device, the
overhead of creating the backend is minimal. In order to serve
such a backend, go−nbd exposes a Handle function:

func Handle ( conn net . Conn , export s [ ] Export , opt ions ∗ Options ) error

By not depending on a specific transport layer and instead only
on a generic net.Conn, it is possible to easily integrate go−nbd
in existing client/server systems or to switch out the typical
TCP transport layer with i.e. QUIC. By not requiring
dial/accept semantics it is also possible to use a P2P
communication layer for peer-to-peer NBD such as WebRTC
with weron[58], which also provides the necessary net.Conn
interface.

In addition to this net.Conn, options can be provided to the
server; these include the ability to make the server read-only by
blocking write operations, or to set the preferred block size. The
actual backend is linked to the server through the concept of an
export; this allows a single server to expose multiple backends
that are identified with a name and description, which can, in
the memory synchronization scenario, be used to identify
multiple shared memory regions. To make the implementation
of the NBD protocol easier, negotiation and transmission phase
headers and other structured data is modelled using Go structs:

// . . .
type Negotiat ionOptionHeader struct {

OptionMagic uint64
ID uint32
Length uint32

}
// . . .

To keep the actual handshake as simple as possible, only the
fixed newstyle handshake is implemented, which also makes the
implementation compliant with the baseline specification as
defined by the protocol[31] (see figure 4). The negotiation starts
by the server sending the negotiation header to the NBD client
and ignoring the client’s flags. The option negotiation phase is
implemented using a simple loop, which either breaks on
success or returns in the case of an error. For the Go
implementation, it is possible to use the binary package to
correctly encode and decode the NBD packets and then
switching on the encoded option ID; in this handshake, the
NEGOTIATION_ID_OPTION_INFO and
NEGOTIATION_ID_OPTION_GO options exchange
information about the chosen export (i.e. block size, export size,
name and description), and if GO is specified, immediately
continue on to the transmission phase. If an export is not found,
the server aborts the connection. In order to allow for
enumeration of available exports, the
NEGOTIATION_ID_OPTION_LIST allows for returning the
list of exports to the client, and
NEGOTIATION_ID_OPTION_ABORT allows aborting
handshake, which can be necessary if i.e. the
NEGOTIATION_ID_OPTION_INFO was chosen, but the
client can’t handle the exposed export, i.e. due to it not
supporting the advertised block size.

The actual transmission phase is implemented similarly, by
reading headers in a loop, switching on the message type and
handling it accordingly.
TRANSMISSION_TYPE_REQUEST_READ forwards a read
request to the selected export’s backend and sends the relevant
chunk to the client,
TRANSMISSION_TYPE_REQUEST_WRITE reads the
offset and chunk from the client, and writes it to the export’s
backend; it is here that the read-only option is implemented by
sending a permission error in case of writes. Finally, the
TRANSMISSION_TYPE_REQUEST_DISC transmission
message type gracefully disconnects the client from the server
and causes the backend to synchronize, i.e. to flush and
outstanding writes to disk. This is especially important in order
to support the lifecycle of the migration API.
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Client

Unlike the server, the client is implemented by using both the
kernel’s NBD client and a user space component. In order to
use the kernel NBD client, it is necessary to first find a free
NBD device (/dev/nbd∗); these devices are allocated by the
kernel NBD module and can be specified with the nbds_max
parameter[59]. In order to find a free device, it can be specified
manually, or check sysfs for a NBD device that reports a zero
size. After a free NBD device has been found, the client can be
started by calling Connect with a net.Conn and options,
similarly to the server.

func Connect ( conn net . Conn , dev i c e ∗ os . F i l e , opt ions ∗ Options ) error

The options can define additional information such as the
client’s preferred block size, connection timeouts or requested
export name, which, in this scenario, can be used to refer to a
specific memory region. The kernel’s NBD device is then
configured to use the connection; the relevant ioctl constants
are extracted by using CGo, or hard-coded values if CGo is not
available:

// Only use CGo i f i t i s a v a i l a b l e
//go : b u i l d l i n u x && cgo

// Import ing the k e rn e l headers
/∗
#inc l ude <sys / i o c t l . h>
#inc l ude <l i n u x /nbd . h>
∗/
import ”C”

const (
// Ex t rac t ing the ` i o c t l ` numbers wi th `CGo`
NEGOTIATION_IOCTL_SET_SOCK = C.NBD_SET_SOCK
// . . .

)

The handshake for the NBD client is negotiated in user space
by Go. Similarly to the server, the client only supports the
“fixed newstyle” negotiation and aborts otherwise. The
negotiation is once again implemented as a simple loop similarly
to the server with it switching on the type; on
NEGOTIATION_TYPE_REPLY_INFO, the client receives
the export size, and with
NEGOTIATION_TYPE_INFO_BLOCKSIZE it receives the
used block size, which it then validates to be within the
specified bounds and as a valid power of two, falling back to the
preferred block size supplied by the options if possible. After
this relevant metadata has been fetched from the server, the
kernel NBD client is further configured with these values using
ioctl , after which the DO_IT ioctl number is used to
asynchronously start the kernel’s NBD client. In addition to
being able to configure the client itself, the client library can
also be used to list the exports of a server; for this, another
handshake is initiated, but this time the
NEGOTIATION_ID_OPTION_LIST option is provided, after
which the client reads the export information from the server
and disconnects.
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Client Lifecycle

The final DO_IT ioctl never returns until it is disconnected,
meaning that an external system must be used to detect
whether the device is actually ready. There are two fundamental
ways of doing this: By polling sysfs for the size parameter as it
was done for finding an unused NBD device, or by using udev.

udev manages devices in Linux, and as a device becomes
available, the kernel sends an event using this subsystem. By
subscribing to this system with the expected NBD device name
to catch when it becomes available, it is possible to have a
reliable and idiomatic way of detecting the ready state:

// Connecting to `udev `
udevConn . Connect ( n e t l i n k . UdevEvent )

// Sub sc r i b ing to even t s f o r the dev i c e name
udevConn . Monitor ( udevReadyCh , udevErrCh , &n e t l i n k . Ru l eDe f i n i t i on s {

Rules : [ ] n e t l i n k . Ru l eDe f i n i t i on {
{

Env : map[ string ] string {
”DEVNAME” : dev i ce .Name( ) ,

} ,
} ,

} ,
})

// Waiting f o r the dev i c e to become a v a i l a b l e
go func ( ) {

// . . .
<−udevReadyCh

opt ions . OnConnected ( )
} ( )

In reality however, due to overheads in udev, it can be faster to
use polling instead of the event system, which is why it is
possible to set the ReadyCheckUdev option in the NBD client
to false , which uses polling instead. Similarly to the setup
lifecycle, the teardown lifecycle is also as an asynchronous
operation. It works by calling three ioctl s
(TRANSMISSION_IOCTL_CLEAR_QUE to complete any
remaining reads/writes,
TRANSMISSION_IOCTL_DISCONNECT to disconnect from
the NBD server and
TRANSMISSION_IOCTL_CLEAR_SOCK to disassociate the
socket from the NBD device so that it can be used again) on
the NBD device’s file descriptor, causing it to disconnect from
the server and causing the prior DO_IT syscall to return, which
in turn causes the prior call to Connect to return.

54



Optimizing Access to the Block Device

When opening the block device that the client is connected to,
the kernel usually provides a caching/buffer mechanism,
requiring an expensive sync syscall to flush outstanding changes
to the NBD client. By using O_DIRECT it is possible to skip
this caching layer and write all changes directly to the NBD
client and thus the server, which is particularly useful in a case
where both the client and server are on the same host, and the
amount of time for syncing should be minimal, as is the case for
a migration scenario. Using O_DIRECT however does come
with the downside of requiring reads/writes that are aligned to
the system’s page size, which is possible to implement in the
specific application using the device to access a resource, but
not in a generic way.
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Combining the NBD Client and Server to a Mount

When both the client and server are started on the same host, it
is possible to connect them efficiently by creating a connected
UNIX socket pair, returning a file descriptor for both the server
and the client respectively, after which both components can be
started in a new Goroutine. This highlights the benefit of not
requiring a specific transport layer or accept semantics for the
NBD library, as it is possible to skip the usually required
handshakes.

This form of a combined client and server on the local device,
with the server’s backend providing the actual resource, forms a
direct path mount - where the path to the block device can be
passed to the application consuming or providing the resource,
which can then choose to open, mmap etc. it. In addition to
this simple path-based mount, a file mount is provided. This
simply opens up the path as a file, so that it can be accessed
with the common read/write syscalls; the benefit over simply
using the path mount and handling the access in the
application consuming the resource is that common challenges
around the lifecycle (Close and Sync) can be handled within the
mount API directly.

The direct slice mount works similarly to the file mount, with
the difference being that it mmaps the NBD device, bringing a
variety of benefits such as not requiring syscalls to read/write
from the memory region as mentioned before. The benefit of
using the slice API over simply using the direct path mount
API letting the application mmap the block device itself is once
again the lifecycle, where Close and Sync handle the
complexities of managing mmaped regions, esp. around garbage
collection and flushing, in the mount directly. As for the API
design, another aspect however is critical; thanks to it providing
a standard Go slice instead of a file, it is possible to use this
interface to provide streaming ability to applications that
expect to work with a [] byte, without requiring changes to the
application itself:

func (d ∗ DirectS l iceMount ) Open ( ) ( [ ] byte , error )

It is also possible to format the backend for a NBD
server/mount with a file system and mount the underlying file
system on the host that accesses a resource, where a file on this
file system can then be opened/mmaped similarly to the FUSE
approach. This is particularly useful if there are multiple
memory regions which all belong to the same application to
synchronize, as it removes the need to start multiple block
devices and reduces the latency overhead associated with it.
This solution can be implemented by i.e. calling mkfs.ext4 on a
block device directly or by formatting the NBD backend ahead
of time, which does however come at the cost of storing and
transferring the file system metadata as well as the potential
latency overhead of mounting it.
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Stages

In order to implement a chunking system and related
components, a pipeline of readers/writers is a useful abstraction
layer; as a result, the mount API is based on a pipeline of
multiple ReadWriterAt stages:

type ReadWriterAt interface {
ReadAt (p [ ] byte , o f f int64 ) (n int , e r r error )
WriteAt (p [ ] byte , o f f int64 ) (n int , e r r error )

}

This way, it is possible to forward calls to the NBD backends
like Size and Sync directly to the underlying backend, but can
chain the ReadAt and WriteAt methods, which carry actual
data, into a pipeline of other ReadWriterAts.
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Chunking

One such ReadWriterAt is the ArbitraryReadWriterAt. This
chunking component allows breaking down a larger data stream
into smaller chunks at aligned offsets, effectively making every
read and write an aligned operation. In ReadAt, it calculates
the index of the chunk that the currently read offset falls into as
well as the offset within the chunk, after which it reads the
entire chunk from the backend into a buffer, copies the
requested portion of the buffer into the input slice, and repeats
the process until all requested data is read:

tota lRead := 0
remaining := len (p)

buf := make ( [ ] byte , a . chunkSize )
// Repeat u n t i l a l l chunks t h a t need to be f e t c h e d have been f e t c h e d
for remaining > 0 {

// C a l c u l a t i n g the chunk and o f f s e t w i th in the chunk
chunkIndex := o f f / a . chunkSize
indexedOf f s e t := o f f % a . chunkSize
r eadS i z e := int64 (min ( remaining , int ( a . chunkSize−indexedOf f s e t ) ) )

// Reading from the next `ReadWriterAt ` in the p i p e l i n e
_, e r r := a . backend . ReadAt ( buf , chunkIndex∗a . chunkSize )
// . . .

copy (p [ tota lRead : ] , buf [ i ndexedOf f s e t : i ndexedOf f s e t+readS i z e ] )
// . . .

remaining −= int ( r eadS i z e )
}

The writer is implemented similarly; it starts by calculating the
chunk’s offset and offset within the chunk. If an entire chunk is
being written to at an aligned offset, it completely bypasses the
chunking system, and writes the data directly to the backend to
prevent unnecessary copies:

// C a l c u l a t i n g the chunk and o f f s e t w i th in the chunk
chunkIndex := o f f / a . chunkSize
indexedOf f s e t := o f f % a . chunkSize
w r i t e S i z e := int (min ( remaining , int ( a . chunkSize−indexedOf f s e t ) ) )

// Fu l l chunk i s covered by the wr i t e reques t , no need to read
i f i ndexedOf f s e t == 0 && w r i t e S i z e == int ( a . chunkSize ) {

_, e r r = a . backend . WriteAt (p [ to ta lWr i t t en : to ta lWr i t t en+w r i t e S i z e ] , chunkIndex∗a . chunkSize )
}
// . . .

If this is not the case, and only parts of a chunk need to be
written, it first reads the complete chunk into a buffer, modifies
the buffer with the data that was changed, and then writes the
entire buffer back until all data has been written:

// Read the e x i s t i n g chunk
_, e r r = a . backend . ReadAt ( buf , chunkIndex∗a . chunkSize )

// Modify the chunk wi th the prov ided data
copy ( buf [ indexedOf f s e t : ] , p [ to ta lWr i t t en : to ta lWr i t t en+w r i t e S i z e ] )

// Write back the updated chunk
_, e r r = a . backend . WriteAt ( buf , chunkIndex∗a . chunkSize )

This simple implementation can be used to efficiently allow
reading and writing data of arbitrary length at arbitrary offsets,
even if the backend only supports aligned reads and writes.

In addition to this chunking system, there is also a
ChunkedReadWriterAt, which ensures that the limits
concerning a backend’s maximum chunk size and aligned
reads/writes are being respected. Some backends, i.e. a backend
where each chunk is represented by a file, might only support
writing to aligned offsets, but don’t support checking for this
behavior; in this example, if a chunk with a larger chunk size is
written to the backend, depending on the implementation, this
could result in this chunk file’s size being extended, which could
lead to a DoS attack vector. It can also be of relevance if a
client instead of a server is expected to implement chunking,
and the server should simply enforce that the aligned reads and
writes are being provided.

In order to check if a read or write is aligned, this
ReadWriterAt checks whether an operation is done to an offset
that is multiples of the chunk size, and whether the length of
the slice of data is a valid chunk size.
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Background Pull

The Puller component asynchronously pulls chunks in the
background. It starts by sorting the chunks with the pull
heuristic mentioned earlier, after which it starts a fixed number
of worker threads in the background, each which ask for a
chunk to pull:

// Sort the chunks accord ing to the p u l l p r i o r i t y c a l l b a c k
s o r t . S l i c e ( chunkIndexes , func ( a , b int ) bool {

return p u l l P r i o r i t y ( chunkIndexes [ a ] ) > p u l l P r i o r i t y ( chunkIndexes [ b ] )
})

// . . .

for {
// Get the next chunk
chunk := p . getNextChunk ( )

// Exi t a f t e r a l l chunks have been p u l l e d
i f chunk >= p . chunks {

break
}
// . . .

// Reading the chunk from the backend
_, e r r := p . backend . ReadAt (make ( [ ] byte , p . chunkSize ) , chunkIndex∗p . chunkSize )
// . . .

}

Note that the puller itself does not copy any data from the
destination; this is handled by a separate component. It simply
reads from the next provided pipeline stage, which is expected
to handle the actual copying process.

An implementation of this stage is the SyncedReadWriterAt,
which takes both a remote and local ReadWriterAt pipeline
stage as its argument. If a chunk is read, i.e. by the puller
component calling ReadAt, it is tracked and marked as remote
by adding it to a local map. The chunk itself is then read from
the remote reader and written to the local one, after which it is
marked as locally available, meaning that on the second read it
is fetched from the faster, local reader instead; a callback is
used to make it possible to track the syncer’s pull progress:

// Track chunk
chk := c . getOrTrackChunk ( o f f )

// I f chunk i s a v a i l a b l e l o c a l l y , re turn i t
i f chk . l o c a l {

return c . l o c a l . ReadAt (p , o f f )
}

// I f chunk i s not a v a i l a b l e l o c a l l y , copy i t from the remote , then mark the chunk as l o c a l
c . remote . ReadAt (p , o f f )
c . l o c a l . WriteAt (p , o f f )
chk . l o c a l = true

// Enable progre s s t r a c k i n g
c . onChunkIsLocal ( o f f )

Note that since this is a pipeline stage, this behavior also
applies to reads that happen aside from those initiated by the
Puller, meaning that any chunks that haven’t been fetched
asynchronously before they are being accessed will be scheduled
to be pulled immediately. The WriteAt implementation of this
stage immediately marks and reports the chunk as available
locally no matter whether it has been pulled before or not.

The combination of the SyncedReadWriterAt stage and the
Puller component implements a pre-copy migration system in
an independently unit testable way, where the remote resource
is being preemptively copied to the destination system first. In
addition to this however, since it can also schedule chunks to be
available immediately, it has some characteristics of a post-copy
migration system too, where it is possible to fetch chunks as
they become available. Using this combination, it is possible to
implement the full read-only managed mount API.
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Background Push

In order to also allow for writes back to the remote source host,
the background push component exists. Once it has been
opened, it schedules recurring writebacks to the remote by
calling Sync; once this is called by either the background worker
system or another component, it launches writeback workers in
the background. These wait to receive a chunk that needs to be
written back; once they receive one, they read it from the local
ReadWriterAt and copy it to the remote, after which the chunk
is marked as no longer requiring a writeback:

// Wait u n t i l t he worker g e t s a s l o t from a semaphore
p . workerSem <− struct {}{}

// F i r s t f e t c h from l o c a l ReaderAt , then copy to remote one
b := make ( [ ] byte , p . chunkSize )
p . l o c a l . ReadAt (b , o f f )
p . remote . WriteAt (b , o f f )

// Remove the chunk from the wr i t e back queue
delete (p . changedOffsets , o f f )

In order to prevent chunks from being pushed back to the
remote before they have been pulled first or written to locally,
the background push system is integrated into the
SyncedReadWriterAt component. This is made possible by
intercepting the offset passed to the progress callback, and only
then marking it as ready:

chunks . NewSyncedReadWriterAt (m. remote , l o c a l , func ( o f f int64 ) error {
return l o c a l . ( ∗ chunks . Pusher ) . MarkOffsetPushable ( o f f )

})

Unlike the puller component, the pusher also functions as a
pipeline stage, and as such provides a ReadAt and WriteAt
implementation. While ReadAt is a simple proxy forwarding
the call to the next stage, WriteAt marks a chunk as ready to
be pushed, causing it to be written back to the remote on the
next writeback cycle, before writing the chunk to the next stage.
If a managed mount is intended to be read-only, the pusher is
simply not included in the pipeline.
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Pipeline

For the direct mount system, the NBD server was connected
directly to the remote; managed mounts on the other hand have
an internal pipeline of pullers, pushers, a syncer, local and
remote backends as well as a chunking system.

Using such a pipeline system of independent stages and other
components also makes the system very testable. To do so,
instead of providing a remote and local ReadWriterAt at the
source and drain of the pipeline respectively, a simple
in-memory or on-disk backend can be used in the unit tests.
This makes the individual components unit-testable on their
own, as well as making it possible to test and benchmark edge
cases (such as reads that are smaller than a chunk size) and
optimizations (like different pull heuristics) without
complicated setup or teardown procedures, and without having
to initialize the complete pipeline.
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Concurrent Device Initialization

The background push/pull components allow pulling from the
remote pipeline stage before the NBD device itself is open. This
is possible because the device doesn’t need to start accessing
the data in a post-copy sense to start the pull, and means that
the pull process can be started as the NBD client and server are
still initializing. Both components typically start quickly, but
the initialization might still take multiple milliseconds. Often,
this amounts to roughly one RTT, meaning that making this
initialization procedure concurrent can significantly reduce the
initial read latency by preemptively pulling data. This is
because even if the first chunks are being accessed right after
the device has been started, they are already available to be
read from the local backend instead of the remote, since they
have been pulled during the initialization and thus before the
mount has even been made available to application. 62



Device Lifecycles

Similarly to how the direct mount API used the basic path
mount to build the file and slice mounts, the managed mount
API provides the same interfaces. In the case of managed
mounts however, this is even more important, since the
synchronization lifecycle needs to be taken into account. For
example, in order to allow the Sync() API to work, the mmaped
region must be msynced before the SyncedReadWriterAt’s
Sync() method is called. In order to support these flows
without tightly coupling the individual pipeline stages, a hooks
system exists that allows for such actions to be registered from
the managed mount, which is also used to implement the
correct lifecycle for closing/tearing down a mount:

type ManagedMountHooks struct {
OnBeforeSync func ( ) error
OnBeforeClose func ( ) error
OnChunkIsLocal func ( o f f int64 ) error

}
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WAN Optimization

While the managed mount system functions as a hybrid pre-
and post-copy system, optimizations are implemented that
make it more viable in a WAN scenario compared to a typical
pre-copy system by using a unidirectional API. Usually, a
pre-copy system pushes changes to the destination host. In
many WAN scenarios however, NATs prevent a direct
connection. Since the source host needs to keep track of which
chunks have already been pulled, the system also becomes
stateful on the source host and events such as network outages
need to be recoverable from.

By using the pull-only, unidirectional API to emulate the
pre-copy setup, the destination can simply keep track of which
chunks it still needs to pull itself, meaning that if there is a
network outage, it can resume pulling or decide to restart the
pre-copy process. Unlike the pre-copy system used for the file
synchronization/hashing approach, this also means that
destination hosts don’t need to subscribe to a central
multiplexing hub, and adding clients to the topology is easy
since their pull progress state does not need to be stored
anywhere except the destination node.
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Overview

As mentioned in Pull-Based Synchronization with Migrations
earlier, the mount API is not optimal for a migration scenario.
Splitting the migration into two discrete phases (see figure 6)
can help fix the biggest problem, the maximum guaranteed
downtime; thanks to the flexible pipeline system of
ReadWriterAts, a lot of the code from the mount API can be
reused for the migration, even if the API and corresponding
wire protocol are different.
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Seeder

The seeder defines a new read-only RPC API, which, in
addition the known ReadAt, also adds new RPCs such as Sync,
which is extended to return dirty chunks, as well as Track(),
which triggers the new tracking phase:

type SeederRemote struct {
ReadAt func ( context context . Context , l ength int , o f f int64 ) ( r ReadAtResponse , e r r error )
S i z e func ( context context . Context ) ( int64 , error )
Track func ( context context . Context ) error
Sync func ( context context . Context ) ( [ ] int64 , error )
Close func ( context context . Context ) error

}

Unlike the remote backend, the seeder also exposes a mount
through the familiar path, file or slice APIs, meaning that even
as the migration is in progress, the underlying resource can still
be accessed by the application on the source host. This fixes the
architectural constraint of the mount API when used for the
migration, where only the destination is able to expose a mount,
while the source simply serves data without accessing it.

The tracking support is implemented in the same modular and
composable way as the syncer, by providing a new pipeline
stage, the TrackingReadWriter. Once activated by the Track
RPC, the tracker intercepts all WriteAt calls and adds them to
a local map before calling the next stage. Once the Sync RPC
is called by the destination host, these dirty offsets are returned
and the map is cleared. A benefit of the protocol being defined
in such a way that only the client ever calls an RPC, thus
making the protocol uni-directional, is that both the transport
layer and RPC system are completely interchangeable. This
works by returning a simple abstract service utility struct from
Open, which can then be used as the implementation for any
RPC framework, i.e. with the actual gRPC service simply
functioning as an adapter.
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Leecher

The leecher then takes this abstract service struct provided by
the seeder, which is implemented by an RPC framework. Using
this, as soon as the leecher is opened, it calls Track() in the
background and starts the NBD device in parallel to achieve a
similar reduction in initial read latency as the mount API. The
leecher introduces a new pipeline stage, the
LockableReadWriterAt. This component simply blocks all read
and write operations to/from the NBD device until Finalize has
been called by using a sync.Cond. This is required because
otherwise, stale data (before Finalize marked the chunks as
dirty) could have poisoned the kernel’s file cache if the
application read data before finalization.

Once the leecher has started the device, it sets up a syncer in
the same way as the mount API. A callback can again be used
to monitor the pull progress, and once the reported availability
is satisfactory, Finalize can be called. This then handles the
critical migration phase, in which the remote application
consuming the resource must be suspended; to do this, Finalize
calls Sync on the seeder, causing it to return the dirty chunks
and suspending the remote application, while the leecher marks
the dirty chunks as remote and schedules them to be pulled
immediately in the background to optimize for temporal
locality:

// Suspends the remote ap p l i c a t i on , f l u s h e s the mount and re turns o f f s e t s t h a t have been wr i t t e n too s ince `Track () `
d i r t y O f f s e t s , e r r := l . remote . Sync ( l . ctx )

// Marks the chunks as remote , caus ing subsequent reads to p u l l them again
l . syncedReadWriter . MarkAsRemote ( d i r t y O f f s e t s )

// Schedu les the chunks to be p u l l e d in the background immediate ly
l . p u l l e r . F i n a l i z e ( d i r t y O f f s e t s )

// Unlocks the l o c a l resource f o r read ing
l . lockableReadWriterAt . Unlock ( )

As an additional measure aside from the lockable ReadWriterAt
is to make accessing the mount too earlier than after
finalization harder, since only Finalize returns the mount,
meaning that the API can’t easily lead to deadlocks between
Finalize and accessing the mount.

After the leecher has successfully reached 100% availability, it
calls Close on the seeder and disconnects the leecher, causing
both to shut down, after which the leecher can re-use the mount
to provide a new seeder which can allow further migrations to
happen in the same way.
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Pluggable Encryption, Authentication and Transport

Compared to existing remote memory and migration solutions,
r3map is designed for a new field of application: WAN. Most
existing systems that provide these solutions are intended to
work in high-throughput, low-latency LAN, where assumptions
concerning authentication and authorization as well as
scalability can be made that are not valid in a WAN
deployment. For example encryption: While in trusted LAN
networks, it can be a viable option to assume that there are no
bad actors in the local subnet, the same can not be assumed for
WAN. While depending on i.e. TLS for the APIs would have
been a viable option for r3map if it were to only support WAN
deployments, it should still be functional and be able to take
advantage of the guarantees if it is deployed in a LAN, which is
why it is transport agnostic.

This makes adding guarantees such as encryption as simple as
choosing the best solution depending on the network conditions.
For low-latency, trusted networks, a protocol like the SCSI
RDMA protocol (SRP) can be chosen, while for WAN, a
standard internet protocol like TLS over TCP or QUIC can be
used instead. Similarly to how the transport layer is
interchangeable, it is RPC-framework independent as well. This
means that RPC frameworks such as Dudirekta (which will be
elaborated on later), which can work over P2P protocols like
WebRTC data channels, are an option for environments with
highly dynamic network topologies, where IP addresses rotate
or there might be temporary loss of connectivity to recover
from, as is the case with i.e. mobile networks, allowing live
migration to work in completely new environments.

Since r3map makes no assumptions about them, authentication
and authorization can be implemented similarly. For LAN
deployments, the typical approach of simply trusting the local
subnet can be used, for public deployments mTLS certificates or
dedicated authentication protocols like OIDC can be an option.
In networks with high RTT, QUIC allows the use of a 0-RTT
handshake, which combines the connectivity and security
handshake into one; this paired with mTLS can be an
interesting option to decrease the initial read latency while still
providing proper authentication.

68



Concurrent Backends

In high-RTT scenarios, the ability to fetch chunks concurrently
is important. Without concurrent backgrounds pulls, latency
can add up quickly, since every read to an offset of the memory
region would have at least one RTT as it’s latency, while
concurrent pulls allow for multiple offsets’ chunks to be pulled
at the same time.

The first requirement for supporting this is that the remote
backend has to be able to read from multiple regions without
globally locking it. For the file backend for example, this is not
the case, as a lock needs to be acquired for the entire file before
an offset can be accessed:

func (b ∗ FileBackend ) ReadAt (p [ ] byte , o f f int64 ) (n int , e r r error ) {
b . l o ck . RLock ( )
defer b . l ock . RUnlock ( )

n , e r r = b . f i l e . ReadAt (p , o f f )
// . . .

}

This can quickly become a bottleneck in the pipeline. One
option that tries to solve this is the directory backend; instead
of using just one backing file, the directory backend is a
chunked backend that uses a directory of files, with each file
representing a chunk. By using multiple files, this backend can
lock each file (and thus chunk) individually, speeding up
concurrent access. The same also applies to writes, where even
concurrent writes to different chunks can safely be done at the
same time as they are all backend by a separate file. This
backend keeps track of these chunks by using an internal map of
locks, and a queue to keep track of the order in which chunks’
corresponding files were opened; when a chunk is first accessed,
a new file is created for the chunk, and if the first operation is
ReadAt, it is also truncated to exactly one chunk length. In
order not to exceed the maximum number of open files for the
backend process, a simple LRU algorithm is used to close an
open file if the limit would be exceeded.
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Overview

RPC backends provide a dynamic way to access a remote
backend. This is useful for lots of use cases, esp. if the backend
exposes a custom resource or requires custom authorization or
caching. For the mount API specifically however, having access
to a remote backend that doesn’t require a custom RPC system
can be useful, since the backend for a remote mount maps fairly
well to the concept of a remote random-access storage device,
for which many protocols and systems exist already.
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Key-Value Stores with Redis

On such option is Redis, an in-memory key-value (KV) store
with network access. To implement a mount backend, chunk
offsets can be mapped to keys, and since bytes are a valid key
type, the chunk itself can be stored directly in the KV store; if
keys don’t exist, they are simply treated as empty chunks:

func (b ∗RedisBackend ) ReadAt (p [ ] byte , o f f int64 ) (n int , e r r error ) {
// Ret r i eve a key corresponding to the chunk from Redis
val , e r r := b . c l i e n t . Get (b . ctx , s t rconv . FormatInt ( o f f , 1 0 ) ) . Bytes ( )
// I f a key does not e x i s t , t r e a t i t as an empty chunk
i f e r r == r e d i s . N i l {

return len (p ) , ni l
}
// . . .

}

func (b ∗RedisBackend ) WriteAt (p [ ] byte , o f f int64 ) (n int , e r r error ) {
// Store an o f f s e t as a key−va lue pa i r in Redis
b . c l i e n t . Set (b . ctx , s t r conv . FormatInt ( o f f , 10) , p , 0)
// . . .

}

Using Redis is particularly interesting because it is able to
handle locking the individual chunks server-side efficiently, and
thanks to its custom protocol and fast serialization it is
well-suited for high-throughput deployment scenarios.
Authentication and authorization for this backend can be
handled using the Redis protocol, and hosting multiple memory
regions can be implemented by using multiple databases or key
prefixes.
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Object Stores with S3

While Redis is interesting for high-throughput scenarios, when
it comes to making a memory region available on the public
internet, it might not be the best choice due to its low-level,
custom protocol and (mostly) in-memory nature. This is where
S3 can be used; a S3 backend can be a good choice for mounting
public information, i.e. media assets, binaries, large file systems
and more into memory. While S3 has traditionally been mostly
an AWS SaaS offering, projects such as Minio have helped it
become the de facto standard for accessing files over HTTP.
Similarly to the directory backend, the S3 backend is chunked,
with one S3 object representing one chunk; if accessing a chunk
returns a 404 error, it is treated as an empty chunk in the same
way as the Redis backend, and multi-tenancy can once again be
implemented either by using multiple S3 buckets or a prefix:

func (b ∗S3Backend ) ReadAt (p [ ] byte , o f f int64 ) (n int , e r r error ) {
// Rece iv ing a chunk us ing Minio ' s S3 c l i e n t
obj , e r r := b . c l i e n t . GetObject (b . bucket , b . p r e f i x+”−”+strconv . FormatInt ( o f f , 10) , minio . GetObjectOptions {})
i f e r r != ni l {

// I f an o b j e c t i s not found , i t i s t r e a t e d as an empty chunk
i f e r r . Error ( ) == errNoSuchKey . Error ( ) {

return len (p ) , ni l
}

// . . .
}
// . . .

}
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Document Databases with ScylllaDB

Another option to access persistent remote resource is a NoSQL
database such as Cassandra, specifically ScyllaDB, which
improves on Cassandra’s latency, a key metric for mounting
remote resources. While this backend is more of a proof of
concept rather than a real use case, it does show that even a
database can be mapped to a memory region, which does allow
for the interesting use case of making the databases’ contents
available directly in memory without having to use a
database-specific client. Here, ReadAt and WriteAt are
implemented by issues queries through ScylllaDB’s DSL, where
each row represents a chunk identified by its offset as the
primary, and as with Redis and S3, non-existing rows are
treated as empty chunks:

func (b ∗CassandraBackend ) ReadAt (p [ ] byte , o f f int64 ) (n int , e r r error ) {
// Execut ing a s e l e c t query f o r a s p e c i f i c chunk , then scanning i t i n t o a by t e s l i c e
var va l [ ] byte
i f e r r := b . s e s s i o n . Query ( ` s e l e c t ␣data␣ from␣`+b . t ab l e+`␣where␣key␣=␣?␣ l i m i t ␣1` , b . p r e f i x+”−”+strconv . FormatInt ( o f f , 1 0 ) ) . Scan(&va l ) ; e r r != ni l {

i f e r r == gocq l . ErrNotFound {
return len (p ) , ni l

}

return 0 , e r r
}
// . . .

}

func (b ∗CassandraBackend ) WriteAt (p [ ] byte , o f f int64 ) (n int , e r r error ) {
// Upser t ing a row with a chunk ' s new content
b . s e s s i o n . Query ( ` i n s e r t ␣ i n t o ␣`+b . t ab l e+`␣ ( key , ␣data )␣ va lues ␣ ( ? , ␣ ?) ` , b . p r e f i x+”−”+strconv . FormatInt ( o f f , 10) , p ) . Exec ( )
// . . .

}

Support for multiple regions can be implemented by using a
different table or key prefix, and migrations are used to create
the table itself similarly to how it would be done in SQL.
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Overview

Another aspect that plays an important role in performance for
real-life deployments is the choice of RPC framework and
transport protocol. As mentioned before, both the mount and
migration APIs are transport-independent, and as a result
almost any RPC framework can be used. An RPC framework
developed as part of r3map is Dudireka[60]. As such, it was
designed specifically with the hybrid pre-and post-copy scenario
in mind. To optimize for this, it has support for concurrent
RPCs, which allows for efficient background pulls as multiple
chunks can be pulled at the same time.

The framework also allows for defining functions on both the
client and the server, which makes it possible to initiate
pre-copy migrations and transfer chunks from the source host to
the destination without having the latter be dialable; while
making the destination host available by dialing it is possible in
trusted LAN deployments, NATs and security concerns make it
harder in WAN deployment. As part of this bidirectional
support it is possible to also pass callbacks and closures as
arguments to RPCs, which makes it possible to model remote
generators with yields to easily report i.e. a migration’s progress
as it is running, while still modelling the migration with a
single, transactional RPC and a return value. In addition to
this, because Dudirekta is also itself transport-agnostic, it is
possible to use transport protocols like QUIC in WAN
deployments, which can reduce the initial latency by using the
0-RTT handshake and thus makes calling an RPC less
expensive. By not requiring TCP-style client-server semantics,
Dudirekta can also be used to allow for P2P migrations over a
protocol such as WebRTC[61].

74



Usage

Dudirekta is reflection based; both RPC definition and calling
an RPC are completely transparent, which makes it optimal for
prototyping the mount and migration APIs. To define the
RPCs to be exposed, a simple implementation struct can be
created for both the client and server. In this example, the
server provides a simple counter with an increment RPC, while
the client provides a simple Println RPC that can be called
from the server. Due to protocol limitations, RPCs must have a
context as their first argument, not have variadic arguments,
and must return either a single value or an error:

// Server
type l o c a l struct { counter int64 }

func ( s ∗ l o c a l ) Increment ( ctx context . Context , d e l t a int64 ) ( int64 , error ) {
return atomic . AddInt64(&s . counter , d e l t a ) , ni l

}

// C l i en t
type l o c a l struct {}

func ( s ∗ l o c a l ) Pr in t ln ( ctx context . Context , msg string ) error {
fmt . Pr in t ln (msg)
// . . .

}

In order to call these RPCs from the client/server respectively,
the remote functions defined earlier are also created as
placeholder structs that will be implemented by Dudirekta at
runtime using reflection and are added to registry, which
provides a handler that links a connection to the RPC
implementation. This handler can then be linked to an any
transport layer, i.e. TCP. After both registries have been linked
to the transport, it is possible to call the RPCs exposed by the
remote peers from both the server and the client, which makes
bidirectional communication possible:

// Server : C a l l s the ` Print ln ` RPC exposed by the c l i e n t
for _, peer := range r e g i s t r y . Peers ( ) {

peer . Pr in t ln ( ctx , ” Hel lo , ␣world ! ” )
}

// C l i en t : C a l l s the `Increment ` RPC exposed by the s e r v e r
for _, peer := range r e g i s t r y . Peers ( ) {

new, e r r := peer . Increment ( ctx , 1)

l og . Pr in t ln (new) // Returns the va lue incremented by one
}

As mentioned earlier, Dudirekta also allows for passing in
closures as arguments to RPCs; since this is also handled
transparently, all that is necessary is to define the signature of
the closure on the client and server, and it can be passed in as
though the RPC were a local call, which also works on both the
client and the server side:

// Server
func ( s ∗ l o c a l ) I t e r a t e (

ctx context . Context ,
l ength int ,
o n I t e r a t i o n func ( i int , b string ) ( string , error ) , // Closure t h a t i s be ing passed in

) ( int , error ) {
for i := 0 ; i < length ; i++ {

rv , e r r := o n I t e r a t i o n ( i , ” This␣ i s ␣ from␣ the␣ c a l l e e ” ) // Remote c l o s u r e i s be ing c a l l e d
}

return l ength , ni l
}

// C l i en t
type remote struct {

I t e r a t e func (
ctx context . Context ,
l ength int ,
o n I t e r a t i o n func ( i int , b string ) ( string , error ) , // The c l o s u r e i s de f i ned in the p l a c e h o l d e r s t r u c t

) ( int , error )
}

for _, peer := range r e g i s t r y . Peers ( ) {
// ` I t e r a t e ` RPC prov ided by the s e r v e r i s c a l l e d
l ength , e r r := I t e r a t e ( peer , ctx , 5 , func ( i int , b string ) ( string , error ) {

// Closure i s t r a n s p a r e n t l y prov ided as a r e g u l a r argumnt
return ” This␣ i s ␣ from␣ the␣ c a l l e r ” , ni l

})

l og . Pr in t ln ( l ength ) // Desp i te having a c l o s u r e as an argument , the RPC can s t i l l r e turn va l u e s
}
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Protocol

The protocol used for Dudirekta is simple and based on JSONL,
a format for exchanging newline-delimited JSON data[62]; a
function call, i.e. to Println looks like this:

[ true , ”1” , ” Pr in t ln ” , [ ” Hel lo , world ! ” ] ]

The first element marks the message as a function call, while
the second one is the call ID, the third represents the name of
the RPC that is being called followed by an array of arguments.
A function return messages looks similar:

[ f a l s e , ”1” , ”” , ” ” ]

Here, the message is marked as a return value in the first
element, the ID is passed with the second element and both the
actual return value (third element) and error (fourth element)
are nil and represented by an empty string. Because it includes
IDs, this protocol allows for concurrent RPCs through muxing
and demuxing the JSONL messages.
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RPC Providers

If an RPC (such as ReadAt in the case of the mount API) is
called, a method with the provided RPC’s name is looked up on
the provided implementation struct and if it is found, the
provided argument’s types are validated against those of the
implementation by unmarshalling them into their native natives.
After the call has been validated by the RPC provider, the
actual RPC implementation is executed in a new Goroutine to
allow for concurrent RPCs, the return and error value of which
is then marshalled into JSON and sent back the caller.

In addition to the RPCs created by analyzing the
implementation struct through reflection, to be able to support
closures, a virtual CallClosure RPC is also exposed. This RPC
is provided by a separate closure management component,
which handles storing references to remote closure
implementations; it also garbage collects those references after
an RPC that has provided a closure has returned.

// I f a c l o s u r e i s prov ided as an argument , handle i t d i f f e r e n t l y
i f arg . Kind ( ) == r e f l e c t . Func {

c losureID , f r e eC lo su r e , e r r := r e g i s t e r C l o s u r e ( r . l o c a l . wrapper , arg . I n t e r f a c e ( ) )
// Freeing the c l o s u r e a f t e r the RPC t h a t has prov ided i t i s out o f scope
defer f r e e C l o s u r e ( )

cmdArgs = append( cmdArgs , c l o sure ID )
}
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RPC Calls

As mentioned earlier, on the caller’s side, a placeholder struct
representing the callee’s available RPCs is provided to the
registry. Once the registry is linked to a connection, the
placeholder struct’s methods are iterated over and the
signatures are validated for compatibility with Dudirekta’s
limitations. They are then implemented using reflection; these
implementations simply marshal and unmarshal the function
calls into Dudirekta’s JSONL protocol upon being called,
effectively functioning as transparent proxies to the remote
implementations; it is at this point that unique call IDs are
generated in order to be able to support concurrent RPCs:

// Creat ing the implementat ion method
r e f l e c t . MakeFunc( functionType , func ( args [ ] r e f l e c t . Value ) ( r e s u l t s [ ] r e f l e c t . Value ) {

// Generating a unique c a l l ID
ca l l ID := uuid . NewString ( )

cmdArgs := [ ] any{}
for i , arg := range args {

// C o l l e c t i n g the func t i on arguments
}

// Marsha l l ing the JSONL fo r the c a l l
b , e r r := j son . Marshal (cmd)

// Writing the JSONL to the remote
conn . Write (b)
// . . .

})

Once the remote has responded with a message containing the
unique call ID, it unmarshals the return values, and returns
from the implemented method. Closures are implemented
similarly to this. If a closure is provided as a function argument,
instead of marshalling the argument and sending it as JSONL,
the function is implemented by creating a “proxy” closure that
calls the remote CallClosure RPC, while reusing the same
marshalling/unmarshalling logic as regular RPCs. Calling this
virtual CallClosure RPC is possible from both the client and
the server because the protocol is bidirectional:

// I f an argument i s a func t i on in s t ead o f a JSON−s e r i a l i z a b l e va lue , handle i t
i f functionType . Kind ( ) == r e f l e c t . Func {

// Create a c l o s u r e proxy
arg := r e f l e c t . MakeFunc( functionType , func ( args [ ] r e f l e c t . Value ) ( r e s u l t s [ ] r e f l e c t . Value ) {

// . . .

// A re f e r ence to the v i r t u a l ` Cal lC losure ` RPC
rpc := r .makeRPC(

” Ca l lC lo sure ” ,
// . . .

)

// Continues wi th the same marsha l l i ng l o g i c as r e g u l a r func t i on c a l l s , then c a l l s the v i r t u a l ` Cal lC losure ` RPC on the remote
})

}

As mentioned earlier, Dudirekta has a few limitations when it
comes to the RPC signatures that are supported. This means
that mount or migration backends can’t be provided directly to
the registry and need to be wrapped using an adapter. To not
have to duplicate this translation for the different backends, a
generic adapter between the Dudirekta API and the go−nbd
backend (as well as the) interfaces exists.
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Connection Pooling with gRPC

While the Dudirekta RPC implementation serves as a good
reference implementation of how RPC backends work, it has
issues with scalability (see figure 23). This is mostly the case
because of it’s JSONL-based wire format, which, while simple
and easy to analyze, is quite slow to serialize. The bidirectional
RPCs do also come at a cost, since they prevent an effective use
of connection pooling; since a client dialing the server multiple
times would mean that server could not reference multiple client
connections as one composite client, it would not be able to
differentiate two client connections from two separate clients.
While implementing a future pooling mechanism based on a
client ID is possible in the future, bidirectional RPCs can also
be completely avoided entirely by implementing the pull-
instead of push-based pre-copy solution described earlier where
the destination host keeps track of the pull progress, effectively
making unary RPC support the only requirement for an RPC
framework.

Thanks to this narrower scope of requirements, alternative RPC
frameworks can be used that do not have this limitation to their
scalability. One such popular framework is gRPC, a
high-performance system based on protocol buffers which is
based on code generation and protocol buffers instead of
reflection and JSONL. Thanks to its support for unary RPCs,
this protocol also supports connection pooling (which removes
Dudirekta’s main bottleneck) and is available in more language
ecosystems (whereas Dudirekta currently only supports Go and
TypeScript), making it possible to port the mount and
migration APIs to other languages with wire protocol
compatibility in the future. In order to implement the backend
and seeder APIs for gRPC, they are defined in the proto3 DSL:

// Fully−q u a l i f i e d package name
package com . p o j t i n g e r . f e l i c i t a s . r3map . migrat ion . v1 ;
// . . .

// RPCs that are being provided , in t h i s case f o r the migrat ion API
s e r v i c e Seeder {

rpc ReadAt ( ReadAtArgs ) r e tu rn s ( ReadAtReply ) {} ;
rpc S i z e ( S izeArgs ) r e tu rn s ( SizeReply ) {} ;
rpc Track ( TrackArgs ) r e tu rn s ( TrackReply ) {} ;
rpc Sync ( SyncArgs ) r e tu rn s ( SyncReply ) {} ;
rpc Close ( CloseArgs ) r e tu rn s ( CloseReply ) {} ;

}

// Message d e f i n i t i o n f o r the `ReadAt` RPC
message ReadAtArgs {

in t32 Length = 1 ;
in t64 Off = 2 ;

}
// . . . Rest o f the message d e f i n i t i o n s

After generating the gRPC bindings from this DSL, the
generated interface is implemented by using the Dudirekta RPC
system’s implementation struct as the abstract representation
for the mount and migration gRPC adapters respectively, in
order to reduce duplication.

79



Optimizing Throughput with fRPC

While gRPC tends to perform better than Dudirekta due to its
support for connection pooling and more efficient binary
serialization, it can be improved upon. This is particularly true
for protocol buffers, which, while being faster than JSON, have
issues with encoding large chunks of data, and can become a
real bottleneck with large chunk sizes:

Figure 7: Amount of remote calls/second carrying 1 MB of data for
fRPC and gRPC, repeated 10 times[63]

fRPC[40], a drop-in replacement for gRPC, can improve upon
this by switching out the serialization layer with the faster
Polyglot[42] library and a custom transport layer. It also uses
the proto3 DSL and the same code generation framework as
gRPC, which makes it easy to switch to by simply re-generating
the code from the DSL. The implementation of the fRPC
adapter functions in a very similar way as the gRPC adapter.
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Results



Testing Environment

All benchmarks were conducted on a test machine with the
following specifications:

Property Value

Device Model Dell XPS 9320
OS Fedora release 38 (Thirty Eight) x86_64
Kernel 6.3.11-200.fc38.x86_64
CPU 12th Gen Intel i7-1280P (20) @ 4.700GHz
Memory 31687MiB LPDDR5, 6400 MT/s

To make the results reproducible, the benchmark scripts with
additional configuration details and notebooks to plot the
related visualizations can be found in the accompanying
repository[64], and multiple runs have been conducted for each
benchmark to ensure consistency.
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Latency

Figure 8: Average first chunk latency for different direct memory
access, disk, userfaultfd, direct mounts and managed mounts (0ms
RTT)

Compared to disk and memory, all other network-capable access
methods (userfaultfd , direct mounts and managed mounts)
have significantly higher latencies when accessing the first
chunk. The latency of userfaultfd is 15 times slower than the
disk access time, while direct mounts and managed mounts are
28 and 40 times slower respectively. Its is however important to
consider that even despite these differences, the overall latency
is still below 200 µs for all access methods.

Figure 9: Box plot for the distribution of first chunk latency for
userfaultfd, direct mounts and managed mounts (0ms RTT)

When looking at the latency distribution for the
network-capable access methods, the spread for the managed
mount is the smallest, but there are significant outliers until
more than 1 ms; direct mounts have a significantly higher
spread, but fewer outliers, while userfaultfd ’s latency advantage
is visible here too.

Figure 10: Average first chunk latency for userfaultfd, direct mounts
and managed mounts by RTT

For the earlier measurements the backends were connected
directly to the mount or userfaultfd handler respectively,
resulting in an effective 0ms RTT. If the RTT is increased, the
backends behave differently; for userfaultfd and direct mounts,
the first chunk latency grows linearly. For managed mounts
however, the latency is higher than at a 0ms RTT, but even at
this peak it is significantly lower than both userfaultfd and
managed mounts; after the RTT reaches 25ms, the first chunk
latency for managed mounts reach latency levels below the
measured latency at 0ms RTT.

Figure 11: Average first chunk latency for managed workers with
0-512 workers by RTT

A similar pattern can be seen when analyzing how different
worker counts for managed mounts influence latency; for zero
workers, the latency grows almost linearly, while if more than 1
worker is used, the latency first has a peak, but then continues
to drop until it reaches a level close to or lower than direct
mounts.
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Read Throughput

Figure 12: Average throughput for memory, disk, userfaultfd, direct
mounts and managed mounts (0ms RTT)

When looking at throughput compared to latency, the trends
for memory, disk, userfaultfd and the two mount types are
similar, but less drastic. Direct memory access still is the
fastest option at a 20 GB/s throughput, but unlike with latency
is followed not by the disk, but rather by direct mounts at 2.8
GB/s and managed mounts at 2.4 GB/s. The disk is slower
than both of these methods at 2.3 GB/s, while userfaultfd has
the lowest throughput at 450 MB/s.

Figure 13: Average throughput for userfaultfd, direct mounts and
managed mounts (0ms RTT)

When looking at just the throughput for network-capable access
methods, userfaultfd falls significantly behind both mount
types, meaning that while at 0 RTT, userfaultfd has lower
latency, but also much lower throughput.

Figure 14: Box plot for the throughput distribution for userfaultfd,
direct mounts and managed mounts (0ms RTT)

When it comes to throughput distribution, userfaultfd has the
lowest spread while managed mounts has the highest, closely
followed by direct mounts. Interestingly, the median throughput
of direct mounts is especially high.

Figure 15: Average throughput for userfaultfd, direct mounts and
managed mounts by RTT

As it is the case with latency, the access methods behave very
differently as the RTT increases. Both direct mount and
userfaultfd throughput drop to below 10 MB/s and 1 MB/s as
the RTT reaches 6 ms, and continues to drop as it increases
further. The throughput for managed mounts also decreases as
RTT increases, but much less drastically compared to the other
methods; even at an RTT of 25ms, the throughput is still over
500 MB/s. If the RTT is lower than 10ms, a throughput of
almost 1 GB/s can still be achieved with managed mounts.

Figure 16: Average throughput for managed mounts with 0-16384
workers by RTT

Similar results the effects of worker counts on latency can be
seen when measuring throughput with different configurations
as RTT increases. While low worker counts result in good
throughput at 0 ms RTT, generally, the higher the worker
counts, the higher the achievable throughput. For 16384
workers, throughput can be consistently kept at over 1 GB/s,
even at a latency of 30 ms.
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Write Throughput

Figure 17: Average write throughput for direct and managed
mounts by RTT

While for a migration or mount scenario read throughput is a
critical metric, it is also interesting to compare the write
throughput of the different access methods. Note that for this
benchmark, the underlying block device is opened with
O_DIRECT, which causes additional overhead when writing
due to it skipping the kernel buffer, but is useful for this
benchmark specifically as it doesn’t require a sync/msync step
to flush data to the disk. As RTT increases, managed mounts
show a much better write performance. Write speeds for direct
mounts drop to below 1 MB/s as soon as the RTT increases to
4ms, while they are consistently above 230 MB/s for managed
mounts, independent of RTT. userfaultfd was not measured, as
it does not allow for tracking changes to the memory regions
handled by it.
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Initialization

Figure 18: Kernel density estimation for the distribution of direct
mount initialization time with polling vs. udev

When it comes to initialization for direct and managed mounts,
as introduced earlier, there are two methods of detecting that a
NBD device is ready: Polling, or subscribing to udev events.
While spread for both methods is similarly high, the average
initialization time for udev is higher than the polling method.

Figure 19: Amount of pre-emptively pulled data for managed
mounts with 0-4096 workers by RTT

Another aspect of the device initialization process is the amount
of data that can be pulled preemptively; here again, the
importance of the worker count becomes apparent. The higher
the worker count is, the more data can be pulled; while for 4096
workers, almost 40 MB of data can be pulled before the device
is opened at an RTT of 7 ms, this drops to 20 MB for 2048
workers, 5 MB for 512 and continues to drop as the worker
count decreases. Even for a 0 ms RTT, more background pull
workers result in more preemptively pulled data.
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Chunking

Figure 20: Average read throughput for server-side and client-side
chunking, direct mounts and managed mounts by RTT

Chunking can be done on either client- or server-side for both
the direct and the managed mounts; looking at throughput for
both options, it is clear that unless the RTT is 0 ms, managed
mounts yield significantly higher throughput compared to direct
mounts for both client- and server-side chunking.

Figure 21: Average read throughput for server-side and client-side
chunking with direct mounts by RTT

When looking at direct mounts specifically, server-side chunking
is a very fast option for 0 ms RTT at almost 500 MB/s
throughput, but drops to just 75 MB/s at a 1 ms RTT, 40 MB/s
at 2 ms, and then continues to drop to just over 5 MB/s at 20
ms RTT. For client-side chunking, the throughput is much lower
at just 30 MB/s even at 0 ms RTT, after which it continues to
drop steadily until reaches just 4.5 MB/s at 20 ms RTT.

Figure 22: Average read throughput for server-side and client-side
chunking with managed mounts by RTT

For managed mounts, the measured throughput is different;
throughput also decreases as RTT increases, but much less
drastically. Server-side throughput also yields higher
throughput for this solution at 450 MB/s at 0 ms RTT vs. 230
MB/s at 0 ms for client-side chunking. As RTT increases,
throughput for both direct and managed backends drop to 300
MB/s for managed mounts and 240 MB/s for direct mounts at
an RTT of 20 ms.

86



RPC Frameworks

Figure 23: Average throughput by RTT for Dudirekta, gRPC and
fRPC frameworks for direct and managed mounts

Looking at the performance for the Dudirekta, gRPC and fRPC
frameworks for managed and direct mounts, throughput
decreases as the RTT increases. While for 0 ms RTT, direct
mounts provide the best throughput in line with the
measurements for the different access technologies, it drops
more drastically as RTT increases compared to managed
mounts. It is also apparent that Dudirekta has a much lower
throughput than both gRPC and fRPC.

Figure 24: Average throughput by RTT for Dudirekta, gRPC and
fRPC frameworks for direct mounts

When looking at direct mounts specifically, the sharp difference
between measured throughput for Dudirekta and gRPC/fRPC
is apparent again. While 0 ms RTT, fRPC reaches a
throughput of 390 MB/s and gRPC of 500 MB/s, Dudirekta
reaches just 50 MB/s. At 2 ms, throughput for all RPC
frameworks drop drastically as the RTT increases, with fRPC
and gRPC both dropping to 40 MB/s, and Dudirekta dropping
to just 20 MB/s. All RPC frameworks ultimately reach a
throughput of just 7 MB/s at an RTT of 14 ms, and then
continue to decrease until they reach 3 MB/s at 40 ms.

Figure 25: Average throughput by RTT for Dudirekta, gRPC and
fRPC frameworks for managed mounts

For managed mounts, Dudirekta stays consistently low
compared to the other options at an average of 45 MB/s, but
doesn’t decrease in throughput as RTT increases. Like for
direct mounts, gRPC manages to outperform fRPC at 0 ms
RTT at 395 MB/s vs. 250 MB/s respectively, but fRPC gets
consistently higher throughput values starting at a 2 ms RTT.
fRPC manages to keep a throughput above 300 MB/s until a
RTT of 25 ms, while gRPC drops below this after 14 ms. While
the average throughput of fRPC is higher, as the RTT reaches
40 ms this difference becomes less pronounced at 50 MB/s after
a 28 ms RTT is reached.
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Latency

Figure 26: Average first chunk latency for memory, file, directory,
Redis, S3 and ScylllaDB backends (0ms RTT)

When it comes to the average first chunk latency for the
memory, file, directory, Redis, S3 and ScyllaDB backends,
considerable differences between the different backends can be
observed. While the overhead of the memory, file and directory
backends over the raw access latency of the direct and managed
mounts (see figure 8) is minimal, the network-capable backends
have a much higher latency. While the values measured for
Redis are only marginally higher than those of the file backend,
S3 and Cassandra have significantly higher average read
latencies, reaching more than a millisecond in the case of the
latter.

Figure 27: Box plot of first chunk latency distribution for memory,
file, directory, Redis, S3 and ScylllaDB (0ms RTT)

When looking at the latency distribution, a significant
difference in spread between the backends can be observed.
While the memory, directory and S3 backends show only
minimal spread albeit at different average latencies, the
network-capable Redis backend shows less spread than the file
backend. Compared to the other options, the Cassandra
backend shows the most amount of spread by far, being
characterized by a noticeably high median latency, too.
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Throughput

Figure 28: Average throughput for memory, file, directory, Redis, S3
and ScylllaDB backends for direct and managed mounts (0ms RTT)

When looking at throughput, the backends behave significantly
more different compared to latency. Both the file and memory
backends have consistently high throughput; for direct mounts,
file throughput is higher than memory throughput at 2081
MB/s vs. 1630 MB/s on average respectively. For managed
mounts, this increases to 2372 MB/s vs. 2178 MB/s. When
comparing the direct vs. managed mount measurement,
ScylllaDB and the network-capable backends in general show
vast differences in throughput; while ScylllaDB manages to
reach almost 700 MB/s for a managed mount scenario, it falls
to only 3 MB/s for a direct mount. Similarly so, for Redis and
the directory backend, direct mounts are 3.5 times slower than
the managed mounts.

Figure 29: Average throughput for Redis, S3 and ScylllaDB
backends for direct mounts (0ms RTT)

For the throughput of network-capable direct mounts, Redis has
the highest average throughput at 114 MB/s compared to both
ScylllaDB at 3 MB/s and S3 at 8 MB/s.

Figure 30: Kernel density estimation (with logarithmic Y axis) for
the throughput distribution for Redis, S3 and ScylllaDB for direct
mounts (0ms RTT)

The throughput distribution for the different backends with
direct mounts shows a similarly drastic difference between Redis
and the other options; a logarithmic Y axis is used to show the
kernel density estimation, and while Redis does have a far
larger spread compared to S3 and ScylllaDB, the throughput is
also noticeably higher.

Figure 31: Average throughput for Redis, S3 and ScylllaDB
backends for managed mounts (0ms RTT)

For managed mounts, ScylllaDB performs better than both S3
and Redis, managing 689 MB/s to 439 MB/s for Redis and 44
MB/s for S3.

Figure 32: Box plot for the throughput distribution for Redis, S3
and ScylllaDB for managed mounts (0ms RTT)

As for the distribution, ScylllaDB has a high spread but also
the highest throughput, while Redis has the lowest spread. S3 is
also noticeably here with a consistently lower throughput
compared to both alternatives, with an average spread.

Figure 33: Average throughput for memory, file, directory, Redis, S3
and ScylllaDB backends for direct mounts by RTT

When looking at average throughput for direct mounts, all
backends drop in throughput as RTT increases. Memory and
file are very fast at above 1.4 GB/s at 0 ms RTT, while Redis
achieves 140 MB/s as the closest network-capable alternative.
The directory backend noticeably has a lower throughput than
Redis, despite not being network-capable. All other backends
are at below 15 MB/s for direct mounts, even at 0 ms RTT, and
all backends trend towards below 3 MB/s at an RTT of 40 ms
for direct mounts.

Figure 34: Average throughput for Redis, S3 and ScylllaDB
backends for direct mounts by RTT

The network-capable backends in isolation again show the
striking difference between Redis and the other backends’ direct
mount performance, but all generally trend towards low
throughput performance as RTT increases.

Figure 35: Average throughput for memory, file, directory, Redis, S3
and ScylllaDB backends for managed mounts by RTT

For managed mounts, the memory and file backends outperform
all other options at over 2.5 GB/s, while the closest
network-capable technology reaches 660 MB/s at 0 ms RTT.
Similarly to the latency measurements, all technologies trend
towards a similar throughput as RTT increases, with sharp
drops for the memory and file backends after the RTT has
reached 2 ms. Noticeably, both the directory and S3 backends
underperform even for managed mounts, with throughput
reaching only 55 MB/s at 40 ms RTT.

Figure 36: Average throughput for Redis, S3 and ScylllaDB
backends for managed mounts by RTT

When looking at just the network-capable backends in isolation,
S3’s low throughput becomes apparent again. Both Redis and
ScylllaDB start between 550-660 MB/s at 0 ms RTT, then
begin to drop after 6 ms until they reach 170-180 MB/s at 40
ms, with Redis consistently having slightly higher throughput
compared to ScylllaDB.
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Discussion



Userfaults

userfaultfd is a simple way to map almost any object into
memory. It is a comparatively simple approach, but also has
significant architecture-related problems that limit its use. One
problem is that it is only able to catch page faults, which means
that it can only handle a data request the first time a chunk of
memory gets accessed, since all future requests to a memory
region handled by userfaultfd will simply return directly from
RAM. This prevents the usage of this approach for accessing
remote resources that update over time, and also makes it hard
to use it for applications with concurrent writers or shared
resources, since there would be no way of updating a section
with a conflict.

Due to these limitations, userfaultfd is essentially limited to
read-only mounts of remote resources, not synchronization.
While it could be a viable solution for post-copy migration, it
also prevents pulling chunks from being pulled before they have
been accessed without adding a layer of indirection. The
userfaultfd API socket is also synchronous, meaning that each
page fault for each chunk needs to be handled one after the
other, making it very vulnerable to high RTT scenarios. This
also results in the initial read latency always being at least the
RTT to the backend.

While it has a lower first chunk latency compared to direct
mounts and managed mounts at 0 ms RTT (see figure 8), the
latency grows linearly as the RTT increases (see figure 10) due
to the aforementioned synchronous API socket and no way of
pulling data in the background. While it has more predictable
throughput and latency than the NBD-based solutions, for high
RTT deployments, it becomes essentially unusable due to the
low throughput. In summary, while this approach is interesting
and idiomatic to Go and Linux, for most data, esp. larger
datasets and high-RTT networks like a WAN, one of the
alternative solutions is a better choice.
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File-Based Synchronization

Similarly to userfaultfd , the approach based on mmaping a
memory region to a file and then synchronizing this file also has
limitations. While userfaultfd is only able to catch the first
reads to a file, this system is only able to catch wries, making it
unsuitable for post-copy migration scenarios. It makes this
system write-only, and very inefficient when it comes to adding
hosts to the network at a later point, since all data needs to be
continuously synchronized to all other hosts that state could
potentially be migrated too.

To work around this issue, a central forwarding hub can be
used, which reduces the amount of data streams required from
the host currently hosting the data, but also adds other
drawbacks such as operational complexity and additional
latency. Still, thanks to this support for the central forwarding
hub, file-based synchronization might be a good choice for
highly throughput-constrained networks, but the inability to do
post-copy migration due to it being write-only makes it a
suboptimal choice for migration scenarios.

91



FUSE

File systems in user space provide a solution that allows for
both pre- and post-copy migration, but doesn’t come without
downsides. As it operates in user space, it depends on context
switching, which does add additional overhead compared to a
file system implementation in kernel space. While some
advanced file system features like inotify and others aren’t
available for a FUSE, the biggest problem is the development
overhead of implementing a FUSE, which requires the
implementation of a completely custom file system. The
optimal solution for memory synchronization is not to provide
an entire file system to track reads and writes on, but instead to
track a single file; for this use case, NBD serves as an existing
API providing this simpler approach, making FUSE not the
optimal technology to implement memory synchronization with.
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Direct Mounts

Direct mounts have a high spread when it comes to first chunk
latency at 0 ms RTT(see figure 9), but are more predictable
when it comes to their throughput (see figure 14). Similarly to
the drawbacks of userfaultfd , it’s first chunk latency grows
linearly as the RTT increases (see figure 10), due to the lack of
preemptive pulls. Despite this, it has the highest throughput at
0 ms RTT, even higher than managed mounts (see figure 12)
due to it having less expensive internal I/O operations as a
result of the lack of this pull system. While compared to
userfaultfd , its read throughput doesn’t drop as rapidly as RTT
increases (see figure 15), its write speed is heavily influenced by
RTT (see figure 17) since writes need to be written to the
remote as they happen, as there is no background push system
either. These characteristics make direct mounts a good access
method to choose if the internal overhead of using managed
mounts is higher than the overhead caused for direct mounts by
the RTT, which can be the case in LAN or other very
low-latency environments.
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Managed Mounts

Managed mounts have an internal overhead to due to the
duplicate I/O operations required for background pull and push,
resulting in a worse throughput for low RTT scenarios
compared to direct mounts (esp. for 0 ms RTT; see figure 12),
as well as higher first chunk latencies (see figure 8). As soon as
the RTT reaches levels more typical for a WAN environment
however, this overhead becomes negligible compared to the
benefits gained over the other access methods thanks to the
background push and pull systems (see figure 10 and 15).

Adjusting the background workers to the specific environment
can substantially increase a managed mounts’ performance (see
figure 11 and 16), since data can be fetched in parallel. The pull
priority function can allow for even more optimized pulls, and
preemptive pulls can significantly reduce initial chunk latency
since data can be pulled asynchronously before the device is
even available. Higher worker counts to increase the amount of
data that is being pulled preemptively (see figure 19), as well as
preferring polling over the udev-based method for detecting
device readiness (see figure 18) can reduce the overall device
Open() time and thus reduce the initial overhead of using this
access method for a remote resource. Write throughput for
managed mounts is also significantly higher than for direct
mounts (see figure 17), which is the case due to the background
push system; writes are first written to the faster local backend,
and are then asynchronously written to the remote, resulting in
much faster write speeds. These characteristics make managed
mounts the preferred access method for WAN environments,
where the RTT is usually more than high enough to balance out
the internal overhead caused by the background push and pull
systems I/O operations.
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Chunking

In general, server-side chunking should almost always be the
preferred technology due to the much better throughput
compared to client-side chunking (see figure 20). For direct
mounts, due to their linear/synchronous access pattern, the
throughput is low for both server- and client-side chunking as
RTT increases, but even with linear access server-side chunking
still outperforms the alternative (see figure 21). For managed
mounts, client-side chunking can still halve the throughput of a
mount compared to server-side chunking (see figure 22). If the
data chunks are smaller than the NBD block size, it reduces the
number of chunks that can be fetched if the number of workers
remains the same. This isn’t the case with server-side chunking
because it doesn’t need an extra worker on the client side for
each additional chunk that needs to be fetched. This allows the
background pull system to fetch more, thus increasing
throughput.
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RPC Frameworks

Out of the frameworks tested, Dudirekta consistently has lower
throughput than the alternatives (see figure 23). It performs
better for managed mounts than direct mounts thanks to its
support for concurrent RPCs and is less sensitive to RTT
compared to gRPC and fRPC for managed mounts, but even
for the latter, its throughput is much lower compared to both
alternatives (see figure 25) due to its lack of connecting pooling.
Despite these drawbacks however, Dudirekta remains an
interesting option for prototyping due to the decreased friction
in developer overhead, bidirectional RPC support and transport
layer independence.

gRPC offers considerably faster throughput compared to
Dudirekta for both managed and direct mounts (see figure 23).
It has support for connection pooling, giving it a significant
performance benefit over Dudirekta for managed mounts (see
figure 25), do to it being able to more efficiently pull chunks in
the background concurrently. It also has good throughput for 0
ms RTT scenarios, and is essentially an industry standard,
resulting in good tooling as well as known scalability
characteristics.

While gRPC offers a throughput improvement compared to
Dudirekta, fRPC is able to improve on gRPC even further due
to its internal optimizations. It is also faster than Dudirekta in
both direct and managed mounts (see figure 23) due to its
support for connection pooling, and compared to gRPC, is a
more lean stack than gRPC and Protocol Buffers, making it
more simple and maintainable. As a less commonly used
solution however it also has less enterprise testing and tooling
available, which means that is a more performant, but also less
proven option.
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Backends

Redis is the network-capable backend with the lowest amount of
initial chunk latency at a 0 ms RTT (see figure 26). When used
for direct mounts, it has a lower throughput compared to
managed mounts (see figure 28), showing good support for
concurrent chunk access; it also has the highest throughput for
direct mounts by a significant margin (see figure 29) due to its
optimized wire protocol and fast key lookups. It also has good
throughput in managed mounts due to these optimizations (see
figure 31), making it a good choice for ephemeral data like
caches, where quick access times are necessary, or the direct
mount API provides benefits, i.e. in LAN deployments.

ScylllaDB has the highest throughput for 0 ms RTT
deployments for managed mounts, showing a very good
concurrent access performance (see figure 31). It does however
fall short when it comes to usage in direct mounts, where the
performance is worse than any other backend (see figure 29),
showing the databases high read latency overhead for looking
up individual chunks, which is also backed up by looking at its
initial chunk latency distribution (see figure 27). For managed
mounts however, as the RTT increases, it shows only slightly
lower performance compared to Redis (see figure 35); as a
result, it is a good choice of backend if most data will be
accessed concurrently by the managed mounts background pull
system, but a bad choice if chunks will be accessed outside this
due to the low direct mount throughput. Another use case
where ScylllaDB can potentially be beneficial due to its
configurable consistency is storing persistent data in a way that
is more dependable than Redis or S3.

S3 has the lowest throughput of all network-capable backends
that were implemented for managed mounts (see figure 31). Its
performance is consistently low even as RTT increases (see
figure 35), presumably due to the high overhead of having to
make multiple HTTP requests to retrieve individual chunks,
despite performing better than ScylllaDB for a direct mount
scenario (see figure 29). S3 remains a good choice of backends if
its use is required due to architectural constraints, or if the
chance of persistently stored chunks being read outside the
managed mounts background pull system is high, where
Casssandra has considerably worse throughput.
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Limitations

While the mount APIs are functional for most use cases, there
are performance and usability issues due it being implemented
in Go. Go is a garbage collected language, and if the garbage
collector is active, it has to stop certain Goroutines. If the
mmap API is used to access a managed mount or a direct
mount, it is possible that the garbage collector tries to manage
an object with a reference to the exposed slice, or tries to
release memory as data is being copied from the NBD device. If
the garbage collector then tries to access the slice, it can stop
the Goroutine providing the slice in the form of the NBD server,
causing the deadlock. One workaround for this is to lock the
mmaped region into memory, but this will also cause all chunks
to be fetched from the remote into memory, which leads to a
high Open() latency; as a result, the recommended workaround
for this is to simply start the NBD server in a separate process,
to prevent the garbage collector from stopping the NBD server
and trying to access the slice at the same time. Another
workaround for this issue could be to instead use a language
without a garbage collector such as Rust, which doesn’t allow
for the deadlock to occur in the first place.

NBD, the underlying technology and protocol for the mount
API, has proven to be fairly performant, but it could still be
improved upon to get closer to the performance of other access
methods, like raw memory access. One such option is ublk[65],
which has the potential to significantly improve concurrent
access speeds over the socket-based connection between the
client and server that NBD uses. It is similar in architecture to
NBD, where a user space server provides the block device
backend, and a kernel ublk driver creates /dev/ublkb∗ block
devices not unlike the /dev/nbd∗ devices created by NBD. At
the point of this thesis being published however, documentation
on this emerging kernel technology is still lacking, and NBD
continues to be the standard way of creating block devices in
user space.
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Using Mounts for Remote Swap with ram−dl

ram−dl[66] is an experimental tech demo built to demonstrate
how the mount API can be used. It uses the fRPC mount
backend to expand local system memory, enabling a variety of
use cases such as mounting a remote systems RAM locally or
easily inspecting a remote systems’ memory contents.

It is based on the direct mount API and uses mkswap, swapon
and swapoff to enable the Kernel to page out to the mount’s
block device:

// Create a swap p a r t i t i o n on the b l o c k dev i c e
exec .Command( ”mkswap” , devPath ) . CombinedOutput ( )

// Enable paging and swapping to the b l o c k dev i c e
exec .Command( ”swapon” , devPath ) . CombinedOutput ( )

// When the mount i s stopped , s top paging and swapping to the b l o c k dev i c e
defer exec .Command( ” swapof f ” , devPath ) . CombinedOutput ( )

ram−dl exposes two commands that achieve this. The first,
ram−ul exposes RAM by exposing a memory, file or
directory-based backend using a fRPC endpoint. ram−dl itself
then connects to this endpoint, starts a direct mount and sets
the block device up for swapping. While this system is intended
mostly as a tech demo and, due to latency and throughput
limitations, is not intended for critical deployments, it does
show how simple using the r3map API can be, as the entire
project consistent of under 300 source lines of code, most of
which is argument handling and boilerplate around
configuration.
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Overview

tapisk[67] is a tool that exposes a tape drive as a block device.
While seemingly unrelated to memory synchronization, it does
serve as an interesting use case due to the similarities to STFS
(mentioned earlier in the FUSE section), which exposed a tape
drive as a file system, and serves as an interesting example for
how even seemingly incompatible backends can be used to store
and synchronize memory.

Using a tape drive as such a backend is challenging, since they
are designed for linear access and don’t support random reads,
while block devices need support for reading and writing to
arbitrary locations. Tapes also have very high read/write
latencies due to slow seek speeds, taking up to more than a
minute to seek to a specific record depending on the offset of
the tape that is being accessed. Due to the modularity of
r3map’s managed mount API however, it is possible to work
around these issues, and still make the tape appear as a
random-access block device.
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Implementation

To achieve this, the background writes and reads provided by
the managed mount API can be used. Using these, a faster
storage backend (i.e. the disk) can be used as a caching layer,
although the concurrent push/pull system can’t be used due to
tapes only supporting synchronous read/write operations. By
using the managed mount, writes are de-duplicated and both
read and write operations can become asynchronous, since both
happen on the fast local backend first, and the background
synchronization system them handles either periodic writebacks
to the tape for write operations or reading a chunk from the
tape if it is missing from the cache.

Since chunking works differently for tapes than for block
devices, and tapes are append-only devices where overwriting a
section prior to the end would result in all following data being
overwritten, too, an index must be used to simulate the offsets
of the block device locations to their physical location on the
tape, which the bbolt database is used for. In order to make
non-aligned reads and writes to the tape possible, the existing
ArbitraryReadWriter system can be used. When a chunk is
then requested to be read, tapisk looks up the physical tape
record for the requested offset, and uses the accelerated
MTSEEK ioctl to seek to the matching record on the tape,
after which the chunk is read from the tape into memory:

func (b ∗TapeBackend ) ReadAt (p [ ] byte , o f f int64 ) (n int , e r r error ) {
// C a l c u l a t i n g the b l o c k f o r the o f f s e t
block := uint64 ( o f f ) / b . b l o c k s i z e

// Get t ing the p h y s i c a l record on the tape from the index
l o ca t i on , e r r := b . index . GetLocation ( block )
// . . .

// Creat ing the seek opera t ion
mtop := &i o c t l . Mtop{}
mtop . SetOp ( i o c t l .MTSEEK)
mtop . SetCount ( l o c a t i o n )

// Seeking to the record
s y s c a l l . S y s c a l l (

s y s c a l l .SYS_IOCTL,
dr iv e . Fd ( ) ,
i o c t l .MTIOCTOP,
uintptr ( unsa fe . Po inter (mtop ) ) ,

)
// . . .

// Reading the chunk from the tape in t o memory
return b . d r i v e . Read (p)

}

Conversely, in order to write a chunk to the tape, tapisk seeks
to the end of the tape (unless the last operation was a write
already, in which case the tape must be at the end already).
Once the seek has completed, the current physical record is
requested from the tape drive, and stored as the record for the
block that is to be written in the index, after which the chunk is
written to the tape. This effectively makes it possible to
overwrite existing chunks despite the tape being append-only,
since subsequent writes to the same chunk result in the changes
being written to the end of the file with the index referencing
the new physical location, but does come at the cost of
requiring defragmentation to clean up prior iterations of chunks.
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Evaluation

tapisk is a unique application of r3map’s technology, and shows
how flexible it is. By using this index, the effectively becomes
tape a standard ReadWriterAt stage (and go−nbd backend)
with support for aligned-reads in the same way as the file or
directory backends, and thanks to r3map’s pipeline design, the
regular chunking system could be reused, unlike in STFS where
it had to be built from scratch. By re-using the universal RPC
backend introduced earlier, which can give remote access to any
go−nbd backend over an RPC library like Dudirekta, gRPC or
fRPC, it is also possible to access a remote tape this way, i.e. to
map a remote tape library robot’s drive to a system over the
network.

Being able to map a tape into memory without having to read
the entire contents first can have a variety of use cases. Tapes
can store a large amount of data, in the case of LTO-9, up to
18 TB on a single tape[68]; being able to access such a large
amount of data directly in memory, instead of having to work
with tooling like tar, can significantly improve developer
experience. In addition to making it much easier to access tape
drives, tapisk can also serve as a replacement for Linear Tape
File System (LTFS). LTFS is a another custom file system
implemented as a kernel module, which also allows for mounting
a tape. If a tapisk-provided block device is formatted with a file
system such as EXT4 or Btrfs, it can also be mounted locally,
allowing the tape to be mounted as a file system as well, with
the added benefit of also being able to support any file system
that supports block devices as their backend. Compared to the
LTFS approach, which is implemented as a kernel module, this
results in a much more maintainable project; while LTFS is tens
of thousands of kernel-level source lines of code, tapisk achieves
effectively the same use case with just under 350.
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Existing Solutions

r3map can also be used to create mountable remote file systems
with unique advantages over existing solutions. Currently, there
are two main approaches to implementing cloud storage clients.
Dropbox and Nextcloud are examples of systems that listen to
file changes on a folder and synchronizes files as changes are
detected, similarly to the file-based memory region
synchronization approach discussed earlier. The big drawback
of this approach is that everything that should be available
needs to be stored locally; if a lot of data is stored in the cloud
drive, it is common to only choose to synchronize a certain set
of data to the local host, as there is no way to dynamically
download files as they are being accessed. Read and write
operations on such systems are however very efficient, since the
system’s file system is used and any changes are written
to/from this file system asynchronously by the synchronization
client. This approach also makes offline availability easy, as files
that have been synchronized to the local system stay available
even if network connectivity has been lost.

The other currently used option is to use a FUSE, i.e. s3fs [29],
which allows for files to be fetched on demand, but comes with
a heavy performance penalty. This is the case because most
implementations, if a write or read request is sent from the
kernel to the FUSE, remote writes or reads happen directly over
the network, which makes this approach very sensitive to
networks with a high RTT. Offline usage is also usually not
possible with a FUSE-based approach, and features such as
inotify , symlinks etc. are hard to implement, leaving two
imperfect solutions to implementing a cloud storage client.
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Hybrid Approach

Using r3map makes it possible to get the benefits of both
approaches by not having to download any files in advance and
also being able to write back changes asynchronously, as well as
being able to use almost any existing file system with its
complete feature set. Files can also be downloaded preemptively
to allow for offline access, just like with the approach that
listens to file changes in a directory.

This is possible by once again using the managed mount API.
The block device is formatted using a valid file system,
i.e. EXT4, and then mounted on the host. By configuring the
background pull systems workers and pull priority function, it is
possible to also download files for offline access, and files have
not yet been downloaded to the local system can be pulled from
the remote backend as their chunks are being accessed. If a
chunk is available locally, reads are also much faster than they
would be with a FUSE implementation, and since writes are
made to the local backend first, and then being synchronized
back to the remote using the remote push system, the same
applies to the writes too. Furthermore, by using the migration
API, it is possible to migrate the file system between two hosts
in a highly efficient way.

By combining the advantages of both approaches into a hybrid
one, it is possible to bridge the gap between them, showing that
memory synchronization technology like r3map can be used to
not only synchronize memory regions, but other state too,
including disks.
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Streaming Access to Remote Databases

Another use case that r3map can be used for is accessing a
remote database locally. While using a database backend (such
as the ScylllaDB backend introduced earlier) is one option of
storing the chunk, this use case is particularly interesting for
file-based databases like SQLite that don’t define a wire
protocol. Using r3map, instead of having to download an entire
SQLite database before being able to use it, it can instead be
mounted with the mount API, which then fetches the necessary
offsets from a remote backend storing the database as they are
being accessed. For most queries, not all data in a database is
required, especially if indexes are used; this makes it possible to
potentially reduce the amount of transferred data by streaming
in only what is required.

Since reads are cached using the local backend with the
managed mount API, only the first read should potentially have
a performance impact (if it has not been pulled first by the
background pull system); similarly so, since writes are written
to the local backend first, and then asynchronously written
back, the same applies to them as well. Moreover, if the
location of i.e. indexes within the SQLite database is known, a
pull heuristic can be specified to fetch these first to speed up
initial queries. Thanks to the managed mount API providing a
standard block device, no changes to SQLite are required in
order for it to support such streaming access; the SQLite file
could simply be stored on a mounted file system provided by
the mount’s block device.

105



Making Arbitrary File Formats Streamable

In addition to making databases streamable, r3map can also be
used to access files in formats that usually don’t support being
accessed before they are fully available locally. One such format
is MP4; usually, if a user downloads a MP4 file, they can’t start
playback before the file is available locally completely. This is
because MP4 typically stores metadata at the end of the file.

The reason for this being stored at the end is usually that the
parameters required for this metadata requires encoding the
video first. This results in a scenario where, assuming that the
file is downloaded from the first to the last offset, the client
needs to wait for the file to be completely accessible locally
before playing it. While MP4 and other formats supports ways
to encode such metadata in the beginning or once every few
chunks in order to make them streamable, this is not the case
for many already existing files and comes with other
tradeoffs[69].

By using r3map however, the pull heuristic function can be
used to immediately pre-fetch the metadata, independently of
where it is placed; the rest of the chunks can then be fetched
either by using the background pull system and/or ad-hoc as
they are being accessed. Similarly to the approach used to
stream in remote databases, this does not require any changes
to the media player being used, since the block device providing
the resource can simply be mounted as a file system and thus
be used transparently.
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Streaming App and Game Assets

Another streaming use case relates to the in-place streaming of
assets. Usually, a game needs to be fully downloaded before it is
playable; for many modern high-budget titles, this can be
hundreds of gigabytes of data, resulting in very long download
times even on fast internet connections. Usually however, not
all assets need to be downloaded before the game can be played;
only some of them are, i.e. the launcher, UI libraries or the first
level’s assets. While theoretically it would be possible to design
a game engine in such a way that assets are only fetched from a
remote as they are being required, this would require extensive
changes to most engine’s architecture, and also be hard to port
back to existing titles; furthermore, current transparent
solutions that can fetch in assets (i.e. mounting a remote NBD
drive or FUSE) are unlikely to be viable solutions considering
their high sensitivity to network latency and the high network
throughput required for streaming in these assets.

By using the managed mount API to stream in the assets
instead, the overhead of such a solution can be reduced, without
requiring changes to the game or its engine. By using the
background pull system, reads from chunks that have already
been pulled are almost as fast as native disk reads, and by
analyzing the access pattern of an existing game, a pull
heuristic function can be generated which preemptively pulls
the game assets that are loaded first, keeping latency spikes as
low as possible. Thanks to using the callbacks for monitoring
the pull progress provided by the managed mounts, the game
can also be paused until a certain local chunk availability is
reached in order to prevent latency spikes from missing assets
that would need to be fetched directly from the remote, while
still allowing for faster startup times.

This concept is not limited to games however, and could also be
applied to launching any application. For many systems,
completely scanning a binary or script into memory isn’t
required for it to start execution; similarly to the situation of
game engines, adding streaming support would require changes
to the interpreters or VMs, since they don’t provide a streaming
API out of the box aside from being able to read files from the
file system. With the managed mount API, this existing
interface can be reused to add streaming support to these
systems by simply pointing them to a file system provided by
the mount’s block device, or, if the interpreter/VM supports it,
mmaping the block device directly and executing the resulting
memory region.
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Modelling State

Synchronization of app state is a fairly complex problem, and
even for simple scenarios, a custom protocol is typically built
for apps. While it is possible to use real-time databases like
Firebase to synchronize some application states, Firebase and
similar solutions to it are usually limited in which data
structures they can store and require specific APIs to
synchronize them. Usually, even for a simple migration of state
between two hosts, synchronization requires state to be
manually marshalled, sent over a network, received on a
destination host, and unmarshalled. This requires a complex
synchronization protocol, and decisions such as when to
synchronize state and when to start pulling from the remote
need to be made manually, which often results in a database on
a third host being used even for simple migrations from one
host to another instead of implementing a peer-to-peer process.
Almost all of these data structures can ultimately be
represented by a byte array; by allocating them from a slice
mmaped by r3map, it is possible to use the managed mount,
direct mount or migration APIs to implement a universal way
of both synchronization and migration of application state,
without having to implement a custom protocol.
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Mounting State

By allocating all structures on r3map’s provided mmaped byte
slice, many interesting use cases become possible. For example,
a TODO app could use it as its backend. Once loaded, the app
mounts the TODO list as a byte slice from a remote server using
the managed mount API; since authentication is pluggable and
i.e. a database backend like ScylllaDB with a prefix for this user
provides a way to do both authentication and authorization,
such an approach can scale fairly well. Using the preemptive
background pull system, when the user connects, they can not
only start streaming in the byte slice from the remote server as
the app is accessing it, but also pull the majority of the
required data first by using the pull heuristic function. If the
TODO list is modified by changing it in the mmaped memory
region, the changes are asynchronously written back to the
underlying block device, and thus to the local backend, where
the asynchronous writebacks can synchronize them back to the
remote. If the local backend is persistent, i.e. file-based, such a
system can even survive network outages.
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Migrating State

In addition to using managed mounts to access remotely stored
application state, migration of arbitrary app state also becomes
a possibility. If a user has a TODO app running on a host like
their smartphone, but wants to continue writing a task
description on their desktop system, they can migrate the app’s
state directly and without a third party/remote database by
using r3map. For this use case, the migration API can be used.
In order to optimize the migration, the pre-copy phase can be
started automatically, i.e. if the phone and desktop are
physically close to each other or in the same network; in such a
LAN migration case, the process is able to benefit from low
latencies and high throughput. It is also possible to integrate
the migration API deeply with system events, i.e. by registering
a service that migrates applications off a system before a
shutdown procedure completes. 110



Migrating Virtual Machines

It is important to note that there are a few limitations with
synchronizing and migrating an application’s internal stateful
data structures this way; locking is not handled by r3map and
would need to be done using a higher-level protocol; moreover,
this assumes that the in-memory representation of the data
structure is consistent across all hosts, something which is not
necessarily the case with programming languages such as Go
with multiple processor architectures being involved. While
projects such as Apache Arrow[70] allow for application state to
represented in a language and CPU architecture independent
way, this comes with some of the same restrictions on which
state can be synchronized as with other solutions such as
Firebase.

In order to keep the possibility of migrating arbitrary state, but
also allow for cross-architecture compatibility, VMs can be used.
Keeping with the TODO app example, if the resulting app is
compiled to Wasm, instead of having to allocate all memory
that is to be synchronized from the r3map-provided mmaped
byte slice, it is possible to instead simply synchronize the Wasm
VM’s linear memory as a whole, which also allows storing the
entire app’s state on a remote as well as migrating an entire
app. Similarly so, the app’s binary, mounted WASI file systems
etc. could all be synchronized this way, too. Thanks to the
preemptive pull implementation outlined earlier, the VM
startup and device initialization can also be made concurrent to
allow for shorter latencies while resuming the VM.

This capability is not limited to Wasm VMs however; rather, it
is possible to add these features to almost any hypervisor or
virtual machine that supports mapping an application’s/virtual
machine’s state to a block device or memory region, essentially
adding the capability to suspend/resume and migrate any
application in the same way that is possible today over WAN,
without requiring any or only minimal changes to the
applications themselves.
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Summary

As is evident from the discussion, there are multiple ways and
configurations for implementing a solution for universally
accessing, synchronizing and migrating memory regions, with
the individual configurations having different strengths and
weaknesses as shown by the benchmarks, making them each
suitable for different use cases.

When it comes to access methods, userfaultfd is an interesting
API that is idiomatic to both Linux in as a first-party solution
and Go due to its fairly low implementation overhead. This
approach however falls short when it comes to throughput,
especially when used in WAN, where other options can provide
better performance. The delta synchronization method for
mmaped files provides a simple way of memory synchronization
for specific scenarios, but does have a very significant I/O and
compute overhead due to its polling and hashing requirements
that make it unsuitable for most applications; similarly so,
FUSE provides an extensive API for implementing a complete
file system in user space, but has significant implementation
overhead making it a suboptimal choice for memory
synchronization. Block device-based direct mounts provide an
access method for LAN deployment scenarios, where networks
typically have low latency and the lack of I/O overhead
compared to other methods makes it a compelling choice, while
managed mounts are the preferred access method for WAN
environments. This is due to their efficient use of background
push and pull, making it possible for them to adapt to the high
latencies typical for such deployments, despite having slightly
higher internal I/O overhead compared to direct mounts. For
most real-world applications, the mount and migration APIs
provide a fast and reliable way of achieving a truly universal
method of working with remote memory and resources.

As for RPC framework and transport choice, most production
environments are well-suited for both fRPC and gRPC as
high-performance options, where fRPC can offer slightly better
average throughput, compared to gRPC’s better developer
tooling as a result of its longstanding legacy. For backend
choice, the file backend provides a good option for memory
migration and synchronizations, as it can provide a performant,
reliable and persistent way of storing a memory region without
using up too much host memory. For memory access use cases,
Redis shows consistently strong throughput in both managed
and direct mount scenarios due to its concurrency
optimizations, especially if ephemeral data is accessed in LAN
environments, while Cassandra (and ScyllaDB) provide a good
option for applications using managed mounts that need strong
concurrency guarantees. These different approaches show that
is possible to adapt the semantics for accessing, synchronizing
and migrating resources backed by memory regions to a wide
variety of backends, wire protocols and APIs.
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Conclusion

The proposed solution consisting of the direct mount, managed
mount and migration APIs as implemented in the form of the
r3map library present an efficient method of accessing,
synchronizing and migrating remote memory regions over a
network, with example use cases and benchmarks showing that
r3map is able to provide both throughput and latency
characteristics that make it possible to use as part of
applications today.

ram−dl demonstrates how minimal r3map’s implementation
overhead is by implementing a system to share and mount a
remote system’s memory in under 300 source lines of code,
while tapisk shows that the APIs can be used to efficiently map
almost any resource, including a linear-access tape drive, to the
concepts provided. Aside from these examples, the proposed
solution also makes many entirely new use cases that were
previously thought of as extraordinarily hard to achieve
possible, such as file synchronization that can combine the
benefits of NBD with those of existing cloud storage clients,
allowing to stream remote databases without requiring changes
to their architecture, making arbitrary file formats streamable
and optimizing app and game asset download processes.

While there are limitations with the proposed solution’s
underlying technologies, these do provide future research
opportunities. For example, the use of Rust as a language that
is garbage collection-free could be studied as an option to
further increase throughput, fix encountered deadlock issues
and reduce overall resource usage, and exploring emerging
alternatives to NBD for creating block devices in user space
such as ublk could help further improve the implementation
presented.

Despite these limitations, the promise of providing a truly
universal way of working with remote memory, without having
to significantly change existing applications or hypervisors, is
provided in the form of the reference implementation. It is also
able to use specialized configurations for LAN and WAN,
making it possible to apply remote memory technology in
completely different and much more dynamic environments
than before. As a result, entirely new ways of thinking about
application architecture and lifecycles become possible, which
can help enable the applications of tomorrow to become both
simpler to maintain and more scalable than those built today.
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