Efficient Synchronization of Linux Memory

Regions over a Network

A Comparative Study and Implementation

Felicitas Pojtinger
2023-08-03

Hochschule der Medien Stuttgart

Introduction

Introduction

In today’s technological landscape, numerous methods exist for
accessing remote resources, such as via databases or custom
APIs. The same applies to resource synchronization, which is
typically addressed on a case-by-case basis via methods such as
third-party databases, file synchronization services, or bespoke
synchronization protocols. Resource migration is also a frequent
challenge, solutions for which often rely on APIs better suited
for long-term persistence, like storing the resource in a remote
database. Existing solutions for resource synchronization are
generally custom-built per application, despite the typical
internal resource abstraction being a memory region or file.

What if, instead of applying application-specific protocols and
abstractions for accessing, synchronizing, and migrating

resources, these processes could be universally managed by

AlBaayblwr ATAvETEE I bScmGe AR Sl TRRvETRR AT SAaYeAem Y W sRlla erverharmE (5o

Technology

User Space and Kernel Space

The kernel represents the core of an operating system. It
directly interacts with hardware, manages system resources such
as CPU time, memory and others, and enforces security policies.
In addition to this, it is also responsible for progress scheduling,
memory management, drivers and many more responsibilities
depending on the implementation. Kernel space refers to the

memory region that this system is stored and executed in[1].

User space on the other hand is the portion of system memory
where user applications execute. Applications can’t directly
access hardware or kernel memory; instead they use APIs to
access them[2]. This API is provided in the form of syscalls,
which serve as a bridge between user and kernel space.
Well-known syscalls are open(), read(), write(), close () and
ioctl (). While most syscalls have a specific purpose, ioctl

EVERTTEE A@ B TAAVAYYE GvaTmEram srmccaread]l merva Teearad] Aavm Bla AlemrareSiaesAyae

Linux Kernel

The Linux kernel was released by Linus Torvalds in 1991.
Developed primarily in the C language, it has recently seen the
addition of Rust as an approved option for further expansion
and development, esp. for drivers[4]. The kernel powers millions
of devices across the globe, including servers, desktop
computers, mobile phones, and embedded devices. As a kernel,
it serves as an intermediary between hardware and applications.
It is engineered for compatibility with a wide array of
architectures, such as ARM, x86, RISC-V, and others. The
open-source nature of the Linux kernel makes it especially
interesting for academic exploration and usage. It offers
transparency, allowing anyone to inspect the source code in
depth. Furthermore, it encourages collaboration by enabling
anyone to modify and contribute to the source code.

(S48

AMha Vaarermml]l Alavam sarres (Enmmm b mem ;@ & s E A e AT e ATAyE RE bSem 6P SRal SarAm

UNIX Signals and Sockets

UNIX signals are an integral component of UNIX-like systems,
including Linux. They function as software interrupts, notifying
a process of significant occurrences, such as exceptions. Signals
may be generated from various sources, including the kernel,
user input, or other processes, making them a versatile tool for

inter-process notifications.

Aside from this notification role, signals also serve as an
asynchronous communication mechanism between processes or
between the kernel and a process. As such, they have an
inherent ability to deliver important notifications without
requiring the recipient process to be in a specific state of
readiness[6]. Each signal has a default action associated with it,
the most common of which are terminating the process or

simply ignoring the signal. 6

Principle of Locality

The principle of locality, or locality of reference, refers to the
tendency of a processor to recurrently access the same set of
memory locations within a brief span of time. This principle
forms the basis of a predictable pattern of behavior that is

evident across systems, and can be divided into two distinct

types: temporal locality and spatial locality.

Temporal locality is based on the frequent use of particular data
within a limited time period. Essentially, if a memory location
is accessed once, it is probable that this same location will be
accessed again in the near future. To make use of this pattern
and to improve performance, systems are designed to maintain
a copy of this frequently accessed data in a faster memory
storage, which in turn, significantly reduces the latency in

subsequent references.

Memory Hierarchy

The memory hierarchy in computers is an organized structure
based on factors such as size, speed, cost, and proximity to the
Central Processing Unit (CPU). It follows the principle of
locality, which suggests that data and instructions that are
accessed frequently should be stored as close to the CPU as
possible[10]. This principle is crucial primarily due to the
limitations of “the speed of the cable”, where both throughput
and latency decrease as distance increases due to factors like
signal dampening and the finite speed of light. While latency
increases the further away a cache is from the CPU, the
capacity of these caches typically also increases, which can be a
worthwhile trade-off depending on the application.

At the top of the hierarchy are registers, which are closest to
the CPU. They offer very high speed, but provide limited

G ATEETE crRErRE imarea sy svaaarraaaavAlmdsSeaage 20) R4 1kSiE@m AdE Aledbe

Memory Management

Memory management forms an important aspect of any kernel,
serving as a critical buffer between applications and physical
memory; as such, it can be considered one of the fundamental
purposes of a kernel itself. This helps maintain stability and
provides security guarantees, such as ensuring that only a

specific process can access its allocated memory.

Within the context of Linux, memory management is divided
into the two aforementioned major segments of kernel space and
user space. The kernel memory module is responsible for
managing kernel space. Slab allocation is a technique employed
in managing this segment; the technique groups objects of the
same size into caches, enhancing memory allocation speed and
reducing fragmentation of memory|[13]. User space is the

memory segment where applications and certain drivers store 9

Ehvad cravarrmAassar Sm 1] .Sranise 1 [EEre GGy RE SAAETRAATERT TAA G A G (G ER AR AT AL

Swap Space

Swap space refers to a designated portion of the secondary
storage utilized as virtual memory in a computer system. This
plays an important role in systems that run multiple
applications simultaneously; since when memory resources are
strained, swap space comes into play, moving inactive parts of
the RAM to secondary storage. This action frees up space in
primary memory for other processes, enabling smoother
operation and preventing a potential system crash due to

memory exhaustion.

In the case of Linux, the swap space implementation aligns with

a demand paging system. This means that memory is allocated
only when required. Swap space in Linux can be a swap

partition, which is a distinct area within secondary storage, or

it can take the form of a swap file, which is a standard file that

AEsA 1hve mEraamcavAlEmyAl A dheiraaaEttmA]l TraaEad] Avm cavavaydl | MERE nemeys AvE

Page Faults

Page faults are instances in which a process attempts to access
a page that is not currently available in primary memory. This
situation triggers the operating system to swap the necessary
page from secondary storage into primary memory. These are
significant events in memory management, as they determine

how efficiently an operating system utilizes its resources.

They can be broadly categorized into two types: minor and
major. Minor page faults occur when the desired page resides in
memory but isn’t linked to the process that requires it. On the
other hand, a major page fault takes place when the page has to
be loaded from secondary storage, a process that typically takes

more time and resources.

To minimize the occurrence of page faults, memory

management algorithms such as the aforementioned LRU and 1

mmap

mmap is a UNIX system call, used for mapping files or devices
into memory, enabling a variety of tasks like shared memory, file
I/0, and fine-grained memory allocation. Due to its powerful
nature, it is commonly used in applications like databases.

A particularly useful feature of mmap is its ability to create
what is essentially a direct memory mapping between a file and
a region of memory[17]. This connection means that read
operations performed on the mapped memory region directly
correspond to reading the file and vice versa, enhancing
efficiency as the amount of expensive context switches

(compared to i.e. the read or write system calls) can be reduced.

A significant advantage of mmap is its ability to do zero-copy

operations. In practical terms, this means that data can be

accessed directly as if it were positioned in memory, eliminating 12

inotify is an event-driven notification system of the Linux
kernel, designed to monitor the file system for different events,
such as modifications and accesses, among others. It’s
particularly useful because it can be configured to watch only
some operations on certain files, i.e. only write operations. This
level of control can offer considerable benefits in cases where

there is a need to focus system resources on specific events.

The API also comes with some other advantages; for example,

it reduces overhead and resource use when compared to polling
strategies. Polling is an I/O-heavy approach as it continuously
checks the status of the file system, regardless of whether any
changes have occurred. In contrast, inotify works in a more
event-driven way, where it only takes action when a specific

event actually occurs. This is usually more efficient, reducing 13

el naeAdl AEamravay @ lllke s hvaras Slhvarem meaE Srmd S ey AT ETALE Rl RMETAGIaE d5Ay 5 hvE

Linux Kernel Caching

Disk caching in Linux is a feature that temporarily stores
frequently accessed data in RAM. It is implemented through
the page cache subsystem, and operates based on the principle
of locality. By retaining data close to the CPU where it can be
quickly accessed without expensive disk reads can significantly
reduce overall access time. The data within the cache is also
managed using the LRU algorithm, which removes the least
recently used items from the cache first when space is needed.
Linux also caches file system metadata in specialized structures
known as the dentry and inode caches. This metadata contains
information such as file names, attributes, and locations. The
key benefit of this is that it speeds up the resolution of path
names and file attributes, such as tracking when files were last

changed for polling.
14

WV IR A @anmls e RSrmGe srmrEyR TS EE ARG (RETA STAmMTAT Y ARITE TAVEY D YR S ARG TRRYE ¢ hyERe

RTT, LAN and WAN

Round-trip time (RTT) represents the time data takes to travel
from a source to a destination and back. It provides a valuable
insight into application latency, and can vary according to many
factors such as network type, system load and physical distance.
Local area networks (LAN) are geographically small networks
characterized by having a low RTT, resulting in a low latency
due to the short distance (typically no more than across an
office or data center) that data needs to travel. As a result of
their small geographical size and isolation, perimeter security is
often applied to such networks, meaning that the LAN is
viewed as a trusted network that doesn’t necessarily require
authentication or encryption between internal systems, resulting
in a potentially lower overhead.

Wide area networks (WAN) on the other hand typically span a
larce ceocravhical area. with the internet beine an exampbple

TCP, UDP, TLS and QUIC

TCP (Transmission Control Protocol), UDP (User Datagram
Protocol), and QUIC (Quick UDP Internet Connections) are
three key communication protocols utilized on the internet

today, while TLS serves as a commonly used encryption and

authentication mechanism.

TCP forms the backbone of internet communication today due
to its connection-oriented nature. It ensures the guaranteed
delivery of data packets and their correct order, making it a
highly dependable means for data transmission. Significantly,
TCP includes error checking, allowing the detection and
subsequent retransmission of lost packets. TCP also includes a
congestion control mechanism to manage data transmission
during high traffic. Due to these features and it’s long legacy,
TCP is widely used to power the majority of the web where

salBalella AeAleraardl siAl aveease A arellaad] Aledhe dhremrmEr A S EmE AR @

Delta Synchronization

Delta synchronization is a technique that allows for efficient

synchronization of files between hosts, transferring only those

parts of the file that have undergone changes instead of the

entire file in order to reduce network and I/O overhead. The

most recognized tool that uses this method

rsync, an open-source data synchronization

Client Ser

Reqlleg for
!fncing F.‘..'e £

. £
W

Searching
Comparing

Matcp;
n,
Generate Literal Bytes &\ g Tokeﬂs

%‘

of synchronization is
utility.

ver

ISegmentation
Fingerprinting

I Construct
New File f’ 17

ACK

File Systems in User Space (FUSE)

File Systems in User Space (FUSE) is an API that enables the
creation of custom file systems in the user space, as opposed to
developing them as kernel modules. This reduces the need for
the low-level kernel development skills that are usually

associated with creating new file systems.

The FUSE APIs are available on various platforms; though
mostly deployed on Linux, they can also be found on macOS
and FreeBSD. In FUSE, a user space program registers itself
with the FUSE kernel module and provides callbacks for the file
system operations. A simple read-only FUSE can for example

implement the following callbacks:

The getattr callback is responsible for getting the attributes of

a file. For a real file system, this would include things like the

file’s size, its permissions, when it was last accessed or modified, '8

Network Block Device (NBD)

Network Block Device (NBD) is a protocol for connecting to a
remote Linux block device. It typically works by
communicating between a user space-provided server and a
kernel-provided client. Though usable over WAN, it is primarily
designed for LAN or localhost usage. The protocol is divided

into two phases: the handshake and the transmission[31]:

Server

Export's Backend |

‘ Handshake

Establish connection

Greeting message (server flags)

NEGOTIATION_ID_OPTION_INFO or NEGOTIATION_ID_OPTION_GO

T
|
|
1
r
1
| Client flags
1
|
r
|
L
|

Options, export size and other metadata

Transmission

Tuntit TYPE REQUEST DISC]

Command (ie. read, write)

| TYPE REQUEST READ]

.
)

Forward read request

Virtual Machine Live Migration

Virtual machine live migration involves moving a virtual
machine, its state, and its connected devices from one host to
another, with the intention of reducing disrupted service by
minimizing downtime during the process. Algorithms that
implement this use case can be categorized into two broad

types: pre-copy migration and post-copy migration.

20

The primary characteristic of pre-copy migration is its
“run-while-copy” nature, meaning that the copying of data from
the source to the destination occurs concurrently while the VM
continues to operate. This method is also applicable in a

generic migration context where other state is being updated.

In the case of a VM, the pre-copy migration procedure starts
with transferring the initial state of a VM’s memory to the
destination host. During this operation, if modifications occur
to any chunks of data, they are flagged as dirty. These dirty
chunks of data are then transferred to the destination until only
a small number remain; this should be an amount small enough
to stay within the allowed maximum downtime criteria. After
this, the VM is suspended at the source, enabling the

synchronization of the remaining chunks of data to the il

AlacrbSrmmi s arm b mvAnTE | METEATAGE T5A AYATAL AT E ¢ rea A S e AN s R e

Post-Copy

Post-copy migration is an alternative live migration approach.
While pre-copy migration operates by copying data before the
VM halt, post-copy migration immediately suspends the VM
operation on the source and resumes it on the destination, with
only a minimal subset of the VM’s data.

During this resumed operation, whenever the VM attempts to
access a chunk of data not initially transferred during the move,
a page fault arises. A page fault, in this context, is the type of
interrupt generated when the VM tries to read or write a chunk
that is not currently present on the destination. This causes the
system to retrieve the missing chunk from the source host,

enabling the VM to continue its operations.

The main advantage of post-copy migration is that it eliminates
the necessity of re-transmitting chunks of “dirty” or changed

Workload Analysis

Recent studies have explored different strategies to determine
the best point in time for virtual machine migration. Even
though these mostly focus on virtual machines, the
methodologies could be adapted for use with generic migration

implementations, too.

One method proposed identifies cyclical workload patterns of
VMs and leverages this to delay migration when it is beneficial.
This is achieved by analyzing recurring patterns that may
unnecessarily postpone VM migration, and then constructing a
model of optimal cycles within which VMs can be migrated. In
the context of VM migration, such cycles could for example be
triggered by a large application’s garbage collector, which
results in numerous changes to VM memory, which could cause

the migration to take longer. 93

Streams and Pipelines

Streams and pipelines are fundamental constructs that enable
efficient, sequential processing of large datasets without the
need for loading an entire dataset into memory. They form the
backbone of modular and efficient data processing techniques,
with each concept having its unique characteristics and use

cases.

A stream represents a continuous sequence of data, serving as a
connector between different points in a system. Streams can be
either a source or a destination for data. Examples include files,
network connections, and standard input/output devices and
many others. The power of streams comes from their ability to
process data as it becomes available; this aspect allows for
minimization of memory consumption, making streams

particularly useful for scenarios involving long-running processes .,

wwlhvETE Alevta 8@ crbramrrvayd] Awrarp mertarmAdlad] savarsiavdla AdE 8 am 2R

Go is a statically typed, compiled open-source programming
language released by Google in 2009. It is typically known for
its simplicity, and was developed to address the unsuitability of
many traditional languages for modern distributed systems
development. Thanks to input from many people affiliated with
UNIX, such as Rob Pike and Ken Thompson, as well as good
support for concurrency, Go is particularly popular for the
development of cloud services and other types of network
programming. The headline feature of Go is “Goroutines”, a
lightweight feature that allows for concurrent function execution
similarly to threads, but is more scalable to support millions of
Goroutines per program. Synchronization between different
Goroutines is provided by using channels, which are type- and

concurrency-safe conduits for data[38].

gRPC and Protocol Buffers

gRPC is an open-source, high-performance remote procedure
call (RPC) framework developed by Google in 2015. It is
recognized for its cross-platform compatibility, supporting a
variety of languages including Go, Rust, JavaScript and more.
gRPC is being maintained by the Cloud Native Computing

Foundation (CNCF), which ensures vendor neutrality.

One of the notable features of the gRPC is its usage of HT'TP/2
as the transport protocol. This allows it to benefit from
features of HTTP/2 such as header compression, which
minimizes bandwidth usage, and request multiplexing, enabling
multiple requests to be sent concurrently over a single
connection. In addition to HTTP /2, gRPC utilizes Protocol
Buffers (Protobuf), more specifically proto3, as the Interface

Definition Language (IDL) and wire format. Protobuf is a %

AARTEATRERE RS G R _TAvar barrrrmETmmEs . arad] lesmeE e e _saari s em || TrRvayRl e A S G A

fRPC and Polyglot

fRPC is an open-source RPC framework released by Loophole
labs in 2022. It is proto3-compatible, meaning that it can be
used as a drop-in replacement for gRPC, promising better
performance characteristics. A unique feature is its ability to
stop the RPC system to retrieve an underlying connection,
which makes it possible to re-use connections for different
purposes[40]. Internally, it uses Frisbee as it’s messaging
framework to implement the request-response semantics[41],
and Polyglot, a high-performance serialization framework, as
it’s Protobuf equivalent. Polyglot achieves a similar goal as
Protobuf, which is to encode data structures in a
platform-independent way, but does so with less legacy code
and a simpler wire format. It is also language-independent,

with implementations for Go, Rust and TypeScript[42].
27

Redis (Remote Dictionary Server) is an in-memory data
structure store, primarily utilized as an ephemeral database,
cache, and message broker introduced by Salvatore Sanfilippo in
2009. Compared to other key-value stores and NoSQL
databases, Redis supports a multitude of data structures,
including lists, sets, hashes, and bitmaps, making it a good
choice for caching or storing data that does not fit well into a
traditional SQL architecture[43].

One of the primary reasons for Redis’s speed is its usage of
in-memory data storage rather than on disk, enabling very
low-latency reads and writes. While the primary use case of

Redis is in in-memory operations, it also supports persistence

by flushing data to disk. This feature broadens the use cases for
Redis, allowing it to handle applications that require 98

Narmararedharsrmm Alamdeas cbasemara orm avRlAISES Acm SR & REA RSTAG? TAREYR TSGR

S3 and Minio

S3 is a scalable object storage service, especially designed for
large-scale applications with frequent reads and writes. It is one
of the prominent services offered by Amazon Web Services
(AWS). S3’s design allows for global distribution, which means
the data can be stored across multiple geographically diverse
servers. This permits fast access times from virtually any
location on the globe, which is important for globally
distributed services or applications with users spread across
different continents.

It offers a variety of storage classes for different needs, i.e. for
whether the requirement is for frequent data access, infrequent

data retrieval, or long-term archival. This ensures that it can

meet a wide array of demands through the same HTTP API. S3
also comes equipped with comprehensive security features, 29

Sl A G et Thrarar kS e mrm avmAl et bvae e kS Avm cravayRl e TS EEmE /A Ay RyarEiEl

Cassandra and ScylllaDB

Apache Cassandra is a wide-column NoSQL database tailored
for large-scale, distributed data management tasks. It is known
for its scalability, designed to handle large amounts of data
spread across numerous servers. Unique to Cassandra is the
absence of a single point of failure, which is critical for systems
requiring high uptime guarantees. Cassandra’s consistency
model is adjustable according to needs, ranging from eventual
to strong consistency. It does not require master nodes due to
its usage of a peer-to-peer protocol and a distributed hash ring
design; these design choices eradicate the bottlenecks and
failure risks associated with other archictures[47].

Despite these capabilities, Cassandra does come with certain
limitations. Under heavy load, it demonstrates high latency,
which can negatively affect performance. Besides this, it also
demands complex conficuration and fine-tuning to perform

Planning

Pull-Based Synchronization With userfaultfd

userfaultfd is a technology that allows for the implementation
of a post-copy migration scenario. In this setup, a memory
region is created on the destination host. When the migrated
application starts to read from this remote region after it was
resumed, it triggers a page fault, which can be resolved by

fetching the relevant offset from the remote.

Typically, page faults are resolved by the kernel. While this
makes sense for use cases where they can be resolved by loading
a local resource into memory, here page faults are handled using
a user space program instead. Traditionally, this is possible by
registering a signal handler for the SIGSEGYV signal, and then
responding to the fault from the program. This however is a
fairly complicated and inefficient process; instead, the

userfaultfd system can be used to register a page fault handler 5,

Al8rayblky s b At Thesrme 7oAy @vA Slhraannein & @alaema]| Braers

Push-Based Synchronization With mmap and Hashing

As mentioned before, mmap allows mapping a memory region
to a file. Similarly to how a region registered with userfaultfd
can be used to store the state or application which is being
migrated, mmap can be used to do the same. Since the region is
linked to a file, when writes happen to the region, they will also
be written to the corresponding file. If it is possible to detect
these writes and copy the changes to the destination host, this

setup can be used to implement a pre-copy migration system.

While writes done to a mmaped region are eventually being
written back to the underlying file, this is not the case
immediately, since the kernel still uses caching on a mmaped
region in order to speed up reads/writes. As a workaround, the
msync syscall can be used, which works similarly to the sync

syscall by flushing any remaining changes from the cache to the
Saeval=mme Sl

32

Push-Pull Synchronization with FUSE

Using a file system in user space (FUSE) can serve as the basis
for implementing either a pre- or a post-copy live migration
system. Similarly to the file-based pre-copy approach, mmap
can be used to map the migrated resource’s memory region to a
file. Instead of storing this file on the system’s default file
system however, a custom file system is implemented, which
allows removing the expensive polling system. Since a custom
file system allows catching reads (for a post-copy migration
scenario, were reads would be responded to by fetching from the
remote), writes (for a pre-copy scenario, where writes would be
forwarded to the destination) and other operations by the
kernel, the use of inotify is no longer required.

While implementing such a custom file system in the kernel is
possible, it is a complex task that requires writing a custom 33

Yearomall srmaAlsillE sEssmeGe & @RS AvATE ayA| eemnamnmaras sse Slaa learema)|

Mounts with NBD

Another mmap-based approach for both pre- and post-copy
migration is to mmap a block device instead of a file. This
block device can be provided through a variety of APIs, most
notably NBD.

By providing a NBD device through the kernel’s NBD client,
the device can be connected to a remote NBD server, which
hosts the resource as a memory region. Any reads/writes
from/to the mmaped memory region are resolved by the NBD
device, which forwards it to the client, which then resolves them
using the remote server; as such, this approach is less so a
synchronization (as the memory region is never actually copied
to the destination host), but rather a mount of a remote

memory region over the NBD protocol.

From an initial overview, the biggest benefit of mmaping such a 34

Overview

This approach also leverages mmap and NBD to handle reads
and writes to the resource’s memory region, similarly to the
prior approaches, but differs from mounts with NBD in a few
significant ways.

Usually, the NBD server and client don’t run on the same
system, but are instead separated over a network. This network
commonly a LAN, and the NBD protocol was designed to
access a remote hard drive in this network environment. As a
result of the protocol being designed for these low-latency,
high-throughput characteristics, there are a few limitations of
the NBD protocol when it is being used in a WAN, an

environment that can not guarantee the characteristics.

While most wire security issues with the protocol can be worked
around by simply using (m)TLS, the big issue of its latency

Chunking

An additional issue that was mentioned before that this
approach can approve upon is better chunking support. While
it is possible to specify the NBD protocol’s chunk size by
configuring the NBD client and server, this is limited to only
4 KB in the case of Linux’s implementation. If the RTT
between the backend and the NBD server however is large, it
might be preferable to use a much larger chunk size; this used
to not be possible by using NBD directly, but thanks to this
layer of indirection it can be implemented.

Similarly to the Linux kernel’s NBD client, backends themselves
might also have constraints that prevent them from working
without a specific chunk size, or otherwise require aligned reads.
This is for example the case for tape drives, where reads and

writes must occur with a fixed block size and on aligned offsets;

& b b arormAmeyd hlhvaars ISrvamse cErATIE GYE AlEruarmyamd el bk TsvaEers S9E

Background Pull and Push

A pre-copy migration system for the managed API is realized in
the form of preemptive pulls that run asynchronously in the
background. In order to optimize for spatial locality, a pull
priority heuristic is introduced; this is used to determine the
order in which chunks should be pulled. Many applications and
other resources commonly access certain parts of their memory
first, so if a resource should be accessible locally as quickly as
possible (so that reads go to the local cache filled by the
preemptive pulls, instead of having to wait at least one RTT to
fetch it from the remote), knowing this access pattern and
fetching these sections first can improve latency and throughput
significantly.

And example of this can be data that consists of one or multiple

headers followed by raw data. If this structure is known, rather 5.

e (Fadbalmeemer mmrartar bt nome 1ISrmmmellae S Ehva |sevrllEesaaammAl Hlha e AlEre

Overview

Similarly to the managed mount API, the migration API tracks
changes to the memory of the resource using NBD. As
mentioned before however, the managed mount API is not
optimized for the migration use case, but rather for efficiently
accessing a remote resource. For live migration, one metric is
very important: maximum acceptable downtime. This refers to
the time that an application, VM etc. must be suspended or
otherwise prevented from writing to or reading from the
resource that is being synchronized; the higher this value is, the
more noticeable the downtime becomes.

To improve on this the pull-based migration API, the migration
process is split into two distinct phases. This is required due
the constraint mentioned earlier; the mount API does not allow

for safe concurrent access of a remote resource by two readers or 44

e amvrE avdh Bhva @Emrrrd rmE NS E tRvAYEram & ER e S aErare cav Al s aram | SAE

Migration Protocol and Critical Phases

The migration protocol that allows for this defines two new
actors: The seeder and the leecher. A seeder represents a
resource that can be migrated from or a host that exposes a
resource, while the leecher represents a client that intents to
migrate a resource to itself. The protocol starts by running an
application with the application’s state on the region mmaped
to the seeder’s block device, similarly to the managed mount
API. Once a leecher connects to the seeder, the seeder starts
tracking any writes to its mount, effectively keeping a list of
dirty chunks. Once tracking has started, the leecher starts
pulling chunks from the seeder to its local cache. After it has
received a satisfactory level of locally available chunks, it asks
the seeder to finalize. This then causes the seeder to suspend
the app accessing the memory region on its block device,

msync/flushes it, and returns a list of chunks that were changed 3

Implementation

Registration and Handlers

By listening to page faults, it is possible to know if a process
wants to access a specific offset of memory that is not yet
available. As mentioned before, this event can be used to then
fetch this chunk of memory from the remote, mapping it to the
offset on which the page fault occurred, thus effectively only
fetching data when it is required. Instead of registering signal
handlers, can use the userfaultfd system introduced with Linux
4.3[50] can also be used to handle these faults in user space in a

more idiomatic way.

In the Go implementation created for this thesis,

userfaultfd —go[51], userfaultfd works by first creating a region

of memory, e.g. by using mmap, which is then registered with

the userfaultfd API:

// Creating the ‘userfaultfd ' API 40

PR - - .

userfaultfd Backends

Thanks to userfaultfd being mostly useful for post-copy
migration, the backend can be simplified to a simple pull-only
reader interface

(ReadAt(p [Jbyte, off int64) (n int, err error)). This means
that almost any io.ReaderAt can be used to provide chunks to
a userfaultfd-registered memory region, and access to this
reader is guaranteed to be aligned to system’s page size, which
is typically 4 KB. By having this simple backend interface, and
thus only requiring read-only access, it is possible to implement
the migration backend in many ways. A simple backend can for
example return a pattern to the memory region:

func (a abcReader) ReadAt(p [|byte, off int64) (n i
n = copy(p, bytes.Repeat ([]byte{'A' + byte(off%

41
return n, nil

Caching Restrictions

As mentioned earlier, this approach uses mmap to map a
memory region to a file. By default, however, mmap doesn’t
write back changes to memory; instead, it simply makes the
backing file available as a memory region, keeping changes to
the region in memory, no matter whether the file was opened as
read-only or read-writable. To work around this, Linux provides
the MAP__ SHARED flag; this tells the kernel to eventually
write back changes to the memory region to the corresponding
regions of the backing file.

Linux caches read to the backing file similarly to how it does if
read etc. are being used, meaning that only the first page fault
would be responded to by reading from disk; this means that

any future changes to the backing file would not be represented

in the mmaped region, similarly to how userfaultfd handles it.

AMhE @asirrra erarmlfamm vA serimm Traya@mmSsmE Slm@Ece 9mm Blhva @EsarRye e 25| meds

Detecting File Changes

In order to actually watch for changes, at first glance, the
obvious choice would be to use inotify, which would allow the
registration of write or sync event handlers to catch writes to
the memory region by registering them on the backing file. As
mentioned earlier however, Linux doesn’t emit these events on
mmaped files, so an alternative must be used; the best option
here is to instead poll for either attribute changes (i.e. the “Last
Modified” attribute of the backing file), or by continuously
hashing the file to check if it has changed. Hashing continuously
with this polling method can have significant downsides,
especially in a migration scenario, where it raises the
guaranteed minimum latency by having to wait for at least the
next polling cycle. Hashing the entire file is also an I/O- and
CPU-intensive process, because in order to compute the hash,

the entire file needs to be read at some point. Within the =

Synchronization Protocol

The delta synchronization protocol for this approach is similar
to the one used by rsync, but simplified. It supports
synchronizing multiple files at the same time by using the file
names as IDs, and also supports a central forwarding hub
instead of requiring peer-to-peer connectivity between all hosts,
which also reduces network traffic since this central hub could
also be used to forward one stream to all other peers instead of
having to send it multiple times. The protocol defines three
actors: The multiplexer, file advertiser and file receiver.

44

Multiplexer Hub

The multiplexer hub accepts mTLS connections from peers.
When a peer connects, the client certificate is parsed to read the
common name, which is then being used as the synchronization
ID. The multiplexer spawns a Goroutine to allow for more peers
to connection. In the Goroutine, it reads the type of the peer.
If the type is src—control, it starts by reading a file name from
the connection, and registers the connection as the one
providing a file with this name, after which it broadcasts the file
as now being available. For the dst—control peer type, it listens
to the broadcasted files from the src—control peers, and relays
and newly advertised and previously registered file names to the
dst—control peers so that it can start receiving them:

case "src—control”:
// Decoding the file name

file := 77 ©

File Advertisement and Receiver

The file advertisement system connects to the multiplexer hub
and registers itself a src—control peer, after which it sends the
advertised file name. It starts a loop that handles dst peer
types, which, as mentioned earlier, send an ID. Once such an ID
is received, it spawns a new Goroutine, which connects to the
hub again and registers itself as a src—data peer, and sends the
ID it has received earlier to allow connecting it to the matching
dst peer. After this initial handshake is complete, the main
synchronization loop is started, which initiates the file
transmission to the dst peer through the multiplexer hub. In
order to allow for termination, it checks if a flag has been set by
a context cancellation which case it returns. If this is not the
case, it waits for the specified polling interval, after which it

restarts the transmission.
46

AMha Blla avaeicrare &l mAasararay s@ oA olhva sl sSmlarmeae ksl Slad@ 58omma

File Transmission

This component does the actual transmission in each iteration
of the delta synchronization algorithm. It receives the remote
hashes from the multiplexer hub, calculates the matching local
hashes and compares them, which it sends the hashes that don’t

match back to the file receiver via the multiplexer hub:
// Receiving remote hashes
remoteHashes := []|string{}

utils .DecodeJSONFixedLength (conn, &remoteHashes)

//

// Calculating the hashes
localHashes , cutoff, err := GetHashesForBlocks(pars

// Comparing the hashes

47
blocksToSend := []int64{}

Hash Calculation

The hash calculation implements the concurrent hashing of
both the file transmitter and receiver. It uses a semaphore to
limit the amount of concurrent access to the file that is being
hashed, and a wait group to detect that the calculation has
finished. Worker Goroutines acquire a lock of this semaphore
and calculate a CRC32 hash, which is a weak but fast hashing
algorithm. For easier transmission, the hashes are hex-encoded
and collected:

// The lock and semaphore
var wg sync.WaitGroup
wg.Add(int (blocks))

lock := semaphore.NewWeighted (parallel)

48

//

File Reception

This is the receiving component of one delta synchronization
iteration. It starts by calculating hashes for the existing local
copy of the file, which it then sends to the remote before it waits
to receive the remote’s hashes and potential truncation request:
// Local hash calculation

localHashes, _, err := GetHashesForBlocks(parallel ,
// Sending the hashes to the remote

// Receiving the remote hashes and the truncation r
blocksToFetch := []int64{}

utils .DecodeJSONFixedLength (conn, &blocksToFetch)

cutoff := int64(0)
utils .DecodeJSONFixedLength (conn, &cutoff)

If the remote detected that the file needs to be cleared (by 49

FUSE Implementation in Go

Implementing a FUSE in Go can be split into two separate
tasks: Creating a backend for a file abstraction API and
creating an adapter between this API and a FUSE library.

Developing a backend for a file system abstraction API such as
afero.Fs instead of implementing it to work with FUSE
bindings directly offers several advantages. This layer of
indirection allows splitting the FUSE implementation from the
actual inode structure of the system, which makes it unit
testable[52]. This is a high priority due to the complexities and
edge cases involved with creating a file system. A standard API
also offers the ability to implement things such as caching by
simply nesting multiple afero.Fs interfaces, and the required

interface is rather minimal[53]:

type Fs interface { 50

o~ N / ow— e 1 \

Overview

Due to a lack of existing, lean and maintained NBD libraries for
Go, a custom pure Go NBD library was implemented[56]. Most
NBD libraries also only provide a server and not the client
component, but both are needed for the NBD-/mount-based
migration approach to work. By not having to rely on CGo or a
pre-existing NBD library like nbdkit, this custom library can
also skip a significant amount of the overhead that is typically
associated with C interoperability, particularly in the context of
concurrency in Go with CGol[57].

51

Server

The NBD server is implemented completely in user space, and
there are no kernel components involved. The backend interface
that is expected by the server is very simple and only requires
four methods to be implemented; ReadAt, WriteAt, Size and
Sync:

type Backend interface {
ReadAt(p [|byte, off int64) (n int, err error)
WriteAt (p []byte, off int64) (n int, err error)
Size () (int64, error)

Sync () error

}

The key difference between this backend design and the one

used for userfaultfd —go is that it also supports writes and

other operations that would typically be expected for a 02

Unlike the server, the client is implemented by using both the
kernel’s NBD client and a user space component. In order to
use the kernel NBD client, it is necessary to first find a free
NBD device (/dev/nbdx); these devices are allocated by the
kernel NBD module and can be specified with the nbds_max
parameter[59]. In order to find a free device, it can be specified
manually, or check sysfs for a NBD device that reports a zero
size. After a free NBD device has been found, the client can be
started by calling Connect with a net.Conn and options,
similarly to the server.

func Connect(conn net.Conn, device xos.File, option

The options can define additional information such as the

client’s preferred block size, connection timeouts or requested

export name, which, in this scenario, can be used to refer to a 53

Client Lifecycle

The final DO__IT ioctl never returns until it is disconnected,
meaning that an external system must be used to detect
whether the device is actually ready. There are two fundamental
ways of doing this: By polling sysfs for the size parameter as it

was done for finding an unused NBD device, or by using udev.

udev manages devices in Linux, and as a device becomes
available, the kernel sends an event using this subsystem. By
subscribing to this system with the expected NBD device name
to catch when it becomes available, it is possible to have a
reliable and idiomatic way of detecting the ready state:

// Connecting to ‘udev’
udevConn . Connect (netlink . UdevEvent)

// Subscribing to events for the device name 54

o . N Vi - — 1 o~ - — P n I - —

Optimizing Access to the Block Device

When opening the block device that the client is connected to,
the kernel usually provides a caching/buffer mechanism,
requiring an expensive sync syscall to flush outstanding changes
to the NBD client. By using O DIRECT it is possible to skip
this caching layer and write all changes directly to the NBD
client and thus the server, which is particularly useful in a case
where both the client and server are on the same host, and the
amount of time for syncing should be minimal, as is the case for
a migration scenario. Using O DIRECT however does come
with the downside of requiring reads/writes that are aligned to
the system’s page size, which is possible to implement in the
specific application using the device to access a resource, but

not in a generic way.

55

Combining the NBD Client and Server to a Mount

When both the client and server are started on the same host, it
is possible to connect them efficiently by creating a connected
UNIX socket pair, returning a file descriptor for both the server
and the client respectively, after which both components can be
started in a new Goroutine. This highlights the benefit of not
requiring a specific transport layer or accept semantics for the
NBD library, as it is possible to skip the usually required
handshakes.

This form of a combined client and server on the local device,

with the server’s backend providing the actual resource, forms a
direct path mount - where the path to the block device can be
passed to the application consuming or providing the resource,
which can then choose to open, mmap etc. it. In addition to

this simple path-based mount, a file mount is provided. This 56

EErrRTA R ATRYEFAE T S5levE saadsln a@ & Blla @A Blheds 9 amem 1Rve oA EEErEYA|

In order to implement a chunking system and related
components, a pipeline of readers/writers is a useful abstraction
layer; as a result, the mount API is based on a pipeline of
multiple ReadWriterAt stages:

type ReadWriterAt interface {
ReadAt(p [|byte, off int64) (n int, err error)
WriteAt (p []byte, off int64) (n int, err error)

This way, it is possible to forward calls to the NBD backends
like Size and Sync directly to the underlying backend, but can
chain the ReadAt and WriteAt methods, which carry actual
data, into a pipeline of other Read WriterAts.

57

Chunking

One such ReadWriterAt is the ArbitraryReadWriterAt. This
chunking component allows breaking down a larger data stream
into smaller chunks at aligned offsets, effectively making every
read and write an aligned operation. In ReadAt, it calculates
the index of the chunk that the currently read offset falls into as
well as the offset within the chunk, after which it reads the
entire chunk from the backend into a buffer, copies the
requested portion of the buffer into the input slice, and repeats
the process until all requested data is read:

totalRead := 0

remaining := len(p)

buf := make([] byte, a.chunkSize)
// Repeat until all chunks that need to be fetche;é
for remaining > 0 {

Background Pull

The Puller component asynchronously pulls chunks in the
background. It starts by sorting the chunks with the pull
heuristic mentioned earlier, after which it starts a fixed number
of worker threads in the background, each which ask for a
chunk to pull:

// Sort the chunks according to the pull priority c
sort . Slice (chunkIndexes, func(a, b int) bool {
return pullPriority (chunkIndexes[a]) > pullPrio

1)
//

for {
// Get the mnext chunk

59
chunk := p.getNextChunk ()

Background Push

In order to also allow for writes back to the remote source host,
the background push component exists. Once it has been
opened, it schedules recurring writebacks to the remote by
calling Sync; once this is called by either the background worker
system or another component, it launches writeback workers in
the background. These wait to receive a chunk that needs to be
written back; once they receive one, they read it from the local
ReadWriterAt and copy it to the remote, after which the chunk

is marked as no longer requiring a writeback:

// Wait until the worker gets a slot from a semapho
p.workerSem <— struct{}{}

// First fetch from local ReaderAt, then copy to re
b := make([]byte, p.chunkSize)

60
p.local .ReadAt(b, off)

For the direct mount system, the NBD server was connected
directly to the remote; managed mounts on the other hand have
an internal pipeline of pullers, pushers, a syncer, local and
remote backends as well as a chunking system.

Using such a pipeline system of independent stages and other
components also makes the system very testable. To do so,

instead of providing a remote and local ReadWriterAt at the

source and drain of the pipeline respectively, a simple

in-memory or on-disk backend can be used in the unit tests.

This makes the individual components unit-testable on their

own, as well as making it possible to test and benchmark edge

cases (such as reads that are smaller than a chunk size) and
optimizations (like different pull heuristics) without

complicated setup or teardown procedures, and without having g,

e SSS m8eam Slhva arrmrallEtE sadimyal [Srmra

Concurrent Device Initialization

The background push/pull components allow pulling from the
remote pipeline stage before the NBD device itself is open. This
is possible because the device doesn’t need to start accessing
the data in a post-copy sense to start the pull, and means that
the pull process can be started as the NBD client and server are
still initializing. Both components typically start quickly, but
the initialization might still take multiple milliseconds. Often,
this amounts to roughly one RT'T, meaning that making this
initialization procedure concurrent can significantly reduce the
initial read latency by preemptively pulling data. This is
because even if the first chunks are being accessed right after
the device has been started, they are already available to be
read from the local backend instead of the remote, since they
have been pulled during the initialization and thus before the

mount has even been made available to application. 62

Device Lifecycles

Similarly to how the direct mount API used the basic path
mount to build the file and slice mounts, the managed mount
API provides the same interfaces. In the case of managed
mounts however, this is even more important, since the
synchronization lifecycle needs to be taken into account. For
example, in order to allow the Sync() API to work, the mmaped
region must be msynced before the SyncedRead WriterAt’s
Sync() method is called. In order to support these flows
without tightly coupling the individual pipeline stages, a hooks
system exists that allows for such actions to be registered from
the managed mount, which is also used to implement the
correct lifecycle for closing/tearing down a mount:

type ManagedMountHooks struct {

OnBeforeSync func() error o
OnBeforeClose func() error

WAN Optimization

While the managed mount system functions as a hybrid pre-
and post-copy system, optimizations are implemented that
make it more viable in a WAN scenario compared to a typical
pre-copy system by using a unidirectional API. Usually, a
pre-copy system pushes changes to the destination host. In
many WAN scenarios however, NATs prevent a direct
connection. Since the source host needs to keep track of which
chunks have already been pulled, the system also becomes
stateful on the source host and events such as network outages

need to be recoverable from.

By using the pull-only, unidirectional APT to emulate the

pre-copy setup, the destination can simply keep track of which
chunks it still needs to pull itself, meaning that if there is a

network outage, it can resume pulling or decide to restart the 64

e A R mavarvaEae@ 1 allElEa Slha cavee ARy e tayRm Tarayd] (Save Blkva Bl

Overview

As mentioned in Pull-Based Synchronization with Migrations
earlier, the mount API is not optimal for a migration scenario.
Splitting the migration into two discrete phases (see figure 6)
can help fix the biggest problem, the maximum guaranteed
downtime; thanks to the flexible pipeline system of
ReadWriterAts, a lot of the code from the mount API can be
reused for the migration, even if the API and corresponding
wire protocol are different.

The seeder defines a new read-only RPC API, which, in

addition the known ReadAt, also adds new RPCs such as Sync,
which is extended to return dirty chunks, as well as Track(),

which triggers the new tracking phase:

type SeederRemote struct {

ReadAt func(context
Size func (context
Track func(context
Sync func(context

(c

Close func(context

}

context
context
context

context

. Context ,
. Context
. Context
. Context

context.C

ontext

)
)
)
)

length int
(int64 , er
error
([]int64 ,

error

Unlike the remote backend, the seeder also exposes a mount

through the familiar path, file or slice APIs, meaning that even

as the migration is in progress, the underlying resource can still

66

Leecher

The leecher then takes this abstract service struct provided by
the seeder, which is implemented by an RPC framework. Using
this, as soon as the leecher is opened, it calls Track() in the
background and starts the NBD device in parallel to achieve a
similar reduction in initial read latency as the mount API. The
leecher introduces a new pipeline stage, the
LockableReadWriterAt. This component simply blocks all read
and write operations to/from the NBD device until Finalize has
been called by using a sync.Cond. This is required because
otherwise, stale data (before Finalize marked the chunks as
dirty) could have poisoned the kernel’s file cache if the
application read data before finalization.

Once the leecher has started the device, it sets up a syncer in

the same way as the mount API. A callback can again be used

b craarmaisAmee lha mavnllll ReeAGEETEEE eiaAl AvaERE Blhva sraravAaseieaAl emems e e 118

Pluggable Encryption, Authentication and Transport

Compared to existing remote memory and migration solutions,
r3map is designed for a new field of application: WAN. Most
existing systems that provide these solutions are intended to
work in high-throughput, low-latency LAN, where assumptions
concerning authentication and authorization as well as
scalability can be made that are not valid in a WAN
deployment. For example encryption: While in trusted LAN
networks, it can be a viable option to assume that there are no
bad actors in the local subnet, the same can not be assumed for
WAN. While depending on i.e. TLS for the APIs would have
been a viable option for r3map if it were to only support WAN
deployments, it should still be functional and be able to take
advantage of the guarantees if it is deployed in a LAN, which is

why it is transport agnostic.
68

AMESa e lleam oAl ASmmG? GrnEPEmT aYam ERNEIA @ A AR A b Ays @ Gl @

Concurrent Backends

In high-RTT scenarios, the ability to fetch chunks concurrently
is important. Without concurrent backgrounds pulls, latency
can add up quickly, since every read to an offset of the memory
region would have at least one RTT as it’s latency, while
concurrent pulls allow for multiple offsets’ chunks to be pulled

at the same time.

The first requirement for supporting this is that the remote
backend has to be able to read from multiple regions without
globally locking it. For the file backend for example, this is not
the case, as a lock needs to be acquired for the entire file before

an offset can be accessed:

func (b *FileBackend) ReadAt(p []byte, off int64) (
b.lock .RLock ()
defer b.lock.RUnlock () 69

Overview

RPC backends provide a dynamic way to access a remote
backend. This is useful for lots of use cases, esp. if the backend
exposes a custom resource or requires custom authorization or
caching. For the mount API specifically however, having access
to a remote backend that doesn’t require a custom RPC system
can be useful, since the backend for a remote mount maps fairly
well to the concept of a remote random-access storage device,
for which many protocols and systems exist already.

70

Key-Value Stores with Redis

On such option is Redis, an in-memory key-value (KV) store
with network access. To implement a mount backend, chunk
offsets can be mapped to keys, and since bytes are a valid key
type, the chunk itself can be stored directly in the KV store; if
keys don’t exist, they are simply treated as empty chunks:

func (b *RedisBackend) ReadAt(p []byte, off int64)
// Retrieve a key corresponding to the chunk fr
val, err := b.client.Get(b.ctx, strconv.Formatl
// If a key does not exist, treat it as an emy
if err = redis.Nil {
return len(p), nil
}
//

71

Object Stores with S3

While Redis is interesting for high-throughput scenarios, when
it comes to making a memory region available on the public
internet, it might not be the best choice due to its low-level,
custom protocol and (mostly) in-memory nature. This is where
S3 can be used; a S3 backend can be a good choice for mounting
public information, i.e. media assets, binaries, large file systems
and more into memory. While S3 has traditionally been mostly
an AWS SaaS offering, projects such as Minio have helped it
become the de facto standard for accessing files over HT'TP.
Similarly to the directory backend, the S3 backend is chunked,
with one S3 object representing one chunk; if accessing a chunk
returns a 404 error, it is treated as an empty chunk in the same
way as the Redis backend, and multi-tenancy can once again be
implemented either by using multiple S3 buckets or a prefix:

72
func (b *xS3Backend) ReadAt(p []|byte, off int64) (n

Document Databases with ScylllaDB

Another option to access persistent remote resource is a NoSQL
database such as Cassandra, specifically ScyllaDB, which
improves on Cassandra’s latency, a key metric for mounting
remote resources. While this backend is more of a proof of
concept rather than a real use case, it does show that even a
database can be mapped to a memory region, which does allow
for the interesting use case of making the databases’ contents
available directly in memory without having to use a
database-specific client. Here, ReadAt and WriteAt are
implemented by issues queries through ScylllaDB’s DSL, where
each row represents a chunk identified by its offset as the
primary, and as with Redis and S3, non-existing rows are

treated as empty chunks:

func (b *CassandraBackend) ReadAt(p []byte, off i%tl

// Ezxzecuting a select query for a specific chun

Overview

Another aspect that plays an important role in performance for
real-life deployments is the choice of RPC framework and
transport protocol. As mentioned before, both the mount and
migration APIs are transport-independent, and as a result
almost any RPC framework can be used. An RPC framework
developed as part of r3map is Dudireka[60]. As such, it was
designed specifically with the hybrid pre-and post-copy scenario
in mind. To optimize for this, it has support for concurrent
RPCs, which allows for efficient background pulls as multiple
chunks can be pulled at the same time.

The framework also allows for defining functions on both the
client and the server, which makes it possible to initiate
pre-copy migrations and transfer chunks from the source host to

the destination without having the latter be dialable; while 74

raa G hlhva AleEr s rmedsearm hvaers acmdllalsla ke ARalSma S Sa avaaas mlE S

Dudirekta is reflection based; both RPC definition and calling
an RPC are completely transparent, which makes it optimal for
prototyping the mount and migration APIs. To define the
RPCs to be exposed, a simple implementation struct can be
created for both the client and server. In this example, the
server provides a simple counter with an increment RPC, while
the client provides a simple Println RPC that can be called
from the server. Due to protocol limitations, RPCs must have a
context as their first argument, not have variadic arguments,

and must return either a single value or an error:

// Server
type local struct { counter int64 }

func (s *local) Increment(ctx context.Context, d%lt;
return atomic.AddInt64(&s.counter, delta), nil

The protocol used for Dudirekta is simple and based on JSONL,
a format for exchanging newline-delimited JSON data[62]; a
function call, i.e. to Println looks like this:

[true, 717, ”Println”, [”"Hello, world!”]]

The first element marks the message as a function call, while
the second one is the call ID, the third represents the name of
the RPC that is being called followed by an array of arguments.
A function return messages looks similar:

[false , 77177’ 99 9 7777]

Here, the message is marked as a return value in the first
element, the ID is passed with the second element and both the
actual return value (third element) and error (fourth element)

are nil and represented by an empty string. Because it includes 7

RPC Providers

If an RPC (such as ReadAt in the case of the mount API) is
called, a method with the provided RPC’s name is looked up on
the provided implementation struct and if it is found, the
provided argument’s types are validated against those of the
implementation by unmarshalling them into their native natives.
After the call has been validated by the RPC provider, the
actual RPC implementation is executed in a new Goroutine to
allow for concurrent RPCs, the return and error value of which
is then marshalled into JSON and sent back the caller.

In addition to the RPCs created by analyzing the
implementation struct through reflection, to be able to support
closures, a virtual CallClosure RPC is also exposed. This RPC
is provided by a separate closure management component,

which handles storing references to remote closure -

Sl mrrararar tads AavmEe e allam el saara maallllarmita Slhvaes saat raraaraRam el e are

RPC Calls

As mentioned earlier, on the caller’s side, a placeholder struct
representing the callee’s available RPCs is provided to the
registry. Once the registry is linked to a connection, the
placeholder struct’s methods are iterated over and the
signatures are validated for compatibility with Dudirekta’s
limitations. They are then implemented using reflection; these
implementations simply marshal and unmarshal the function
calls into Dudirekta’s JSONL protocol upon being called,
effectively functioning as transparent proxies to the remote
implementations; it is at this point that unique call IDs are
generated in order to be able to support concurrent RPCs:

// Creating the implementation method
reflect . MakeFunc(functionType , func(args []reflect.
// Generating a unique call ID

78
calllD := uuid.NewString ()

Connection Pooling with gRPC

While the Dudirekta RPC implementation serves as a good
reference implementation of how RPC backends work, it has
issues with scalability (see figure 23). This is mostly the case
because of it’s JSONL-based wire format, which, while simple
and easy to analyze, is quite slow to serialize. The bidirectional
RPCs do also come at a cost, since they prevent an effective use
of connection pooling; since a client dialing the server multiple
times would mean that server could not reference multiple client
connections as one composite client, it would not be able to
differentiate two client connections from two separate clients.
While implementing a future pooling mechanism based on a
client ID is possible in the future, bidirectional RPCs can also
be completely avoided entirely by implementing the pull-
instead of push-based pre-copy solution described earlier where

the destination host keeps track of the pull progress, effectively ™

Optimizing Throughput with fRPC

While gRPC tends to perform better than Dudirekta due to its

support for connection pooling and more efficient binary

serialization, it can be improved upon. This is particularly true

for protocol buffers, which, while being faster than JSON, have

issues with encoding large chunks of data, and can become a

real bottleneck with large chunk sizes:

fRPC vs gRPC (higher is better)

RPCs/second per client for 1-MB messages, repeated 10 times

fRPC ® gRPC

800 784

RPCs/second

Results

Testing Environment

All benchmarks were conducted on a test machine with the
following specifications:

Property Value

Device Model Dell XPS 9320

(O Fedora release 38 (Thirty Eight) x86_ 64
Kernel 6.3.11-200.1c38.x86_ 64

CPU 12th Gen Intel i7-1280P (20) @ 4.700GHz
Memory 31687MiB LPDDRS5, 6400 MT /s

To make the results reproducible, the benchmark scripts with
additional configuration details and notebooks to plot the
related visualizations can be found in the accompanying

repository[64], and multiple runs have been conducted for each o

henchmark to enciire congictency

Latency

Average First Chunk Latency for Different Technologies (Oms RTT)

Memory [767 ns

Disk [4014 ns

userfaultfd

preeone _

Managed Mounts

=]

20 40 60 80 100 120 140 160
Average First Chunk Latency (us)
Figure 8: Average first chunk latency for different direct memory

access, disk, userfaultfd, direct mounts and managed mounts (Oms 82
DY

Read Throughput

Average Throughput for Different Technologies (Oms RTT)

userfaultfd 4
Disk 1 /

7
Managed Mounts -

Direct Mounts

s

2500 SDUO 75(]0 lDCIOO 12500 15(]00 17500 20000
Average Throughput (MB/s)

Figure 12: Average throughput for memory, disk, userfaultfd, direct
mounts and managed mounts (Oms RTT)

When looking at throughput compared to latency, the trends o

for memory, disk, userfaultfd and the two mount types are

Write Throughput

Average Write Throughput by RTT

200 A
w
o]
H 150
5
= —— Direct Mounts
g‘ —— Managed Mounts
E 100 1
P
£
=

50 4

T T T T T T T
oms 1ms 2ms 3ms 4ms 5ms 6ms
RTT (ms)

Figure 17: Average write throughput for direct and managed
mounts by RTT]4

Initialization

Direct Mount Initialization Time Distribution (KDE)

Polling (ms)
udev (ms)

0.10 4

0.08

0.06 1

Density

0.04 1

0.02 4

0.00 T T T T
5 10 15 20 25 30

Initialization Time (ms)

Figure 18: Kernel density estimation for the distribution of direct 85

TR . gy . T 11 1

Chunking

Average Read Throughput by RTT, Chunking Type and Mount Type

— ServersSide Chunking (Direct Mount)
-== Server-Side Chunking (Managed Mount)
500 4 —— Client-Side Chunking (Direct Mount)
--- Client-Side Chunking (Managed Mount)
400 4
@ N -
£ Ny T
2 300 4 e et
F= ~ g
R Ve e e
A N P st N
e | N TTTTTmmes-- T el
5 Sss
= I
= S
g —~ -
g e
g 2004 ST
100
o
00 25 5.0 75 10.0 125 15.0 175 20.0
RTT (ms)

Figure 20: Average read throughput for server-side and client-side
chunking, direct mounts and managed mounts by RTT
86

RPC Frameworks

Average Throughput by RTT for All RPC Frameworks

500 4

400 7

300 4

200 4

Average Throughput (MB/s)

100 1

= dudirekta (Direct Mount)
dudirekta (Managed Mount)
= grpc (Direct Mount)
- grpc (Managed Mount)
—— frpc (Direct Mount)
- frpc (Managed Mount)

Figure 23: Averag

e~~~ 5 .

T
10 15 20 25 30 35 40
RTT (ms)

throughput by RTT for Dudirekta, gRPC and

87

Latency

Average First Chunk Latency for Different Backends (Oms RTT)

1000

800

600

400

200

. r/// -

b\‘-)
<¥

Backend

Latency (ps)

88

Throughput

Average Throughput for Different Backends (Oms RTT)

File

Memory

Cassandra

Backend

Redis

Directory

S3

N Direct Mount

s Managed Mount

0 500 1000 1500
Average Throughput (MB/s)

T
2000

Figure 28: Average throughput for memory, file, directory, Redis, S3
and ScylllaDB backends for direct and managed mounts (Oms RTT)
89

Discussion

userfaultfd is a simple way to map almost any object into
memory. It is a comparatively simple approach, but also has
significant architecture-related problems that limit its use. One
problem is that it is only able to catch page faults, which means
that it can only handle a data request the first time a chunk of
memory gets accessed, since all future requests to a memory
region handled by userfaultfd will simply return directly from
RAM. This prevents the usage of this approach for accessing
remote resources that update over time, and also makes it hard
to use it for applications with concurrent writers or shared
resources, since there would be no way of updating a section

with a conflict.

Due to these limitations, userfaultfd is essentially limited to

read-only mounts of remote resources, not synchronization. 90

WIS Aa 3t aranllAl ha & sealslla @l sSasm (Fare rvAEEs Arrassy SrmSGEamEms s Aavm s

File-Based Synchronization

Similarly to userfaultfd, the approach based on mmaping a
memory region to a file and then synchronizing this file also has
limitations. While userfaultfd is only able to catch the first
reads to a file, this system is only able to catch wries, making it
unsuitable for post-copy migration scenarios. It makes this
system write-only, and very inefficient when it comes to adding
hosts to the network at a later point, since all data needs to be
continuously synchronized to all other hosts that state could
potentially be migrated too.

To work around this issue, a central forwarding hub can be
used, which reduces the amount of data streams required from
the host currently hosting the data, but also adds other
drawbacks such as operational complexity and additional
latency. Still, thanks to this support for the central forwarding

91
hub. file-based svnchronization micht be a cood choice for

FUSE

File systems in user space provide a solution that allows for
both pre- and post-copy migration, but doesn’t come without
downsides. As it operates in user space, it depends on context
switching, which does add additional overhead compared to a
file system implementation in kernel space. While some
advanced file system features like inotify and others aren’t
available for a FUSE, the biggest problem is the development
overhead of implementing a FUSE, which requires the
implementation of a completely custom file system. The
optimal solution for memory synchronization is not to provide
an entire file system to track reads and writes on, but instead to
track a single file; for this use case, NBD serves as an existing
API providing this simpler approach, making FUSE not the

optimal technology to implement memory synchronization with.
92

Direct Mounts

Direct mounts have a high spread when it comes to first chunk
latency at 0 ms RTT(see figure 9), but are more predictable
when it comes to their throughput (see figure 14). Similarly to
the drawbacks of userfaultfd, it’s first chunk latency grows
linearly as the RTT increases (see figure 10), due to the lack of
preemptive pulls. Despite this, it has the highest throughput at
0 ms RTT, even higher than managed mounts (see figure 12)
due to it having less expensive internal I/O operations as a
result of the lack of this pull system. While compared to
userfaultfd , its read throughput doesn’t drop as rapidly as RTT
increases (see figure 15), its write speed is heavily influenced by
RTT (see figure 17) since writes need to be written to the
remote as they happen, as there is no background push system
either. These characteristics make direct mounts a good access

method to choose if the internal overhead of using managed 93

Managed Mounts

Managed mounts have an internal overhead to due to the
duplicate 1/O operations required for background pull and push,
resulting in a worse throughput for low RTT scenarios
compared to direct mounts (esp. for 0 ms RTT; see figure 12),
as well as higher first chunk latencies (see figure 8). As soon as
the RTT reaches levels more typical for a WAN environment
however, this overhead becomes negligible compared to the
benefits gained over the other access methods thanks to the
background push and pull systems (see figure 10 and 15).

Adjusting the background workers to the specific environment
can substantially increase a managed mounts’ performance (see
figure 11 and 16), since data can be fetched in parallel. The pull
priority function can allow for even more optimized pulls, and

preemptive pulls can significantly reduce initial chunk latency 94

AR Aledse s ava savsillad] eermmmm hraasaAassial ke svatoavaa Sleva Alenimm S|

Chunking

In general, server-side chunking should almost always be the
preferred technology due to the much better throughput
compared to client-side chunking (see figure 20). For direct
mounts, due to their linear/synchronous access pattern, the
throughput is low for both server- and client-side chunking as
RTT increases, but even with linear access server-side chunking
still outperforms the alternative (see figure 21). For managed
mounts, client-side chunking can still halve the throughput of a
mount compared to server-side chunking (see figure 22). If the
data chunks are smaller than the NBD block size, it reduces the
number of chunks that can be fetched if the number of workers
remains the same. This isn’t the case with server-side chunking
because it doesn’t need an extra worker on the client side for
each additional chunk that needs to be fetched. This allows the

background pull system to fetch more, thus increasing 95

RPC Frameworks

Out of the frameworks tested, Dudirekta consistently has lower
throughput than the alternatives (see figure 23). It performs
better for managed mounts than direct mounts thanks to its
support for concurrent RPCs and is less sensitive to RTT
compared to gRPC and fRPC for managed mounts, but even
for the latter, its throughput is much lower compared to both
alternatives (see figure 25) due to its lack of connecting pooling.
Despite these drawbacks however, Dudirekta remains an
interesting option for prototyping due to the decreased friction
in developer overhead, bidirectional RPC support and transport

layer independence.

gRPC offers considerably faster throughput compared to
Dudirekta for both managed and direct mounts (see figure 23).
It has support for connection pooling, giving it a significant 96

VA P TR T E RVEr A St Avase NN A aal=he Saen crmaemaGrad| srmEskearsa ([cvaraE

Redis is the network-capable backend with the lowest amount of
initial chunk latency at a 0 ms RTT (see figure 26). When used
for direct mounts, it has a lower throughput compared to
managed mounts (see figure 28), showing good support for
concurrent chunk access; it also has the highest throughput for
direct mounts by a significant margin (see figure 29) due to its
optimized wire protocol and fast key lookups. It also has good
throughput in managed mounts due to these optimizations (see
figure 31), making it a good choice for ephemeral data like
caches, where quick access times are necessary, or the direct
mount API provides benefits, i.e. in LAN deployments.

ScylllaDB has the highest throughput for 0 ms RTT
deployments for managed mounts, showing a very good
concurrent access performance (see figure 31). It does however
fall short when it comes to usace in direct mounts. where the

Limitations

While the mount APIs are functional for most use cases, there
are performance and usability issues due it being implemented
in Go. Go is a garbage collected language, and if the garbage
collector is active, it has to stop certain Goroutines. If the
mmap API is used to access a managed mount or a direct
mount, it is possible that the garbage collector tries to manage
an object with a reference to the exposed slice, or tries to
release memory as data is being copied from the NBD device. If
the garbage collector then tries to access the slice, it can stop
the Goroutine providing the slice in the form of the NBD server,
causing the deadlock. One workaround for this is to lock the
mmaped region into memory, but this will also cause all chunks
to be fetched from the remote into memory, which leads to a
high Open() latency; as a result, the recommended workaround

for this is to simply start the NBD server in a separate process,

Using Mounts for Remote Swap with ram—dl

ram—dl[66] is an experimental tech demo built to demonstrate
how the mount API can be used. It uses the fRPC mount
backend to expand local system memory, enabling a variety of
use cases such as mounting a remote systems RAM locally or

easily inspecting a remote systems’ memory contents.

It is based on the direct mount API and uses mkswap, swapon
and swapoff to enable the Kernel to page out to the mount’s
block device:

// Create a swap partition on the block device
exec .Command ("mkswap”, devPath).CombinedOutput ()

// Enable paging and swapping to the block device
exec .Command(”swapon”, devPath).CombinedOutput ()
99

VY -

Overview

tapisk[67] is a tool that exposes a tape drive as a block device.
While seemingly unrelated to memory synchronization, it does
serve as an interesting use case due to the similarities to STFS
(mentioned earlier in the FUSE section), which exposed a tape
drive as a file system, and serves as an interesting example for
how even seemingly incompatible backends can be used to store

and synchronize memory.

Using a tape drive as such a backend is challenging, since they
are designed for linear access and don’t support random reads,
while block devices need support for reading and writing to
arbitrary locations. Tapes also have very high read/write
latencies due to slow seek speeds, taking up to more than a
minute to seek to a specific record depending on the offset of

the tape that is being accessed. Due to the modularity of 100

9

Derm vemnda rmesmmerayd] sravascear: M DT hvasmamrae Kt Sa v Rla Ay ssraeolle

Implementation

To achieve this, the background writes and reads provided by
the managed mount API can be used. Using these, a faster
storage backend (i.e. the disk) can be used as a caching layer,
although the concurrent push/pull system can’t be used due to
tapes only supporting synchronous read/write operations. By
using the managed mount, writes are de-duplicated and both
read and write operations can become asynchronous, since both
happen on the fast local backend first, and the background
synchronization system them handles either periodic writebacks
to the tape for write operations or reading a chunk from the
tape if it is missing from the cache.

Since chunking works differently for tapes than for block
devices, and tapes are append-only devices where overwriting a
section prior to the end would result in all following data being

101
overwritten. too. an index must be used to simulate the offsets

tapisk is a unique application of r3map’s technology, and shows
how flexible it is. By using this index, the effectively becomes
tape a standard ReadWriterAt stage (and go—nbd backend)
with support for aligned-reads in the same way as the file or
directory backends, and thanks to r3map’s pipeline design, the
regular chunking system could be reused, unlike in STFS where
it had to be built from scratch. By re-using the universal RPC
backend introduced earlier, which can give remote access to any
go—nbd backend over an RPC library like Dudirekta, gRPC or
fRPC, it is also possible to access a remote tape this way, i.e. to
map a remote tape library robot’s drive to a system over the

network.

Being able to map a tape into memory without having to read
the entire contents first can have a variety of use cases. Tapes |,

AETH EEATYE & EmreTE STARrAThITAeE AE Almdta Sm Blhva pead Aes 1TANYOLOY amAy A

Existing Solutions

r3map can also be used to create mountable remote file systems
with unique advantages over existing solutions. Currently, there
are two main approaches to implementing cloud storage clients.
Dropbox and Nextcloud are examples of systems that listen to
file changes on a folder and synchronizes files as changes are
detected, similarly to the file-based memory region
synchronization approach discussed earlier. The big drawback
of this approach is that everything that should be available
needs to be stored locally; if a lot of data is stored in the cloud
drive, it is common to only choose to synchronize a certain set
of data to the local host, as there is no way to dynamically
download files as they are being accessed. Read and write
operations on such systems are however very efficient, since the
system’s file system is used and any changes are written

to/from this file system asynchronously by the synchronization 103

Hybrid Approach

Using r3map makes it possible to get the benefits of both
approaches by not having to download any files in advance and
also being able to write back changes asynchronously, as well as
being able to use almost any existing file system with its
complete feature set. Files can also be downloaded preemptively
to allow for offline access, just like with the approach that

listens to file changes in a directory.

This is possible by once again using the managed mount API.

The block device is formatted using a valid file system,

i.e. EXT4, and then mounted on the host. By configuring the
background pull systems workers and pull priority function, it is
possible to also download files for offline access, and files have

not yet been downloaded to the local system can be pulled from

the remote backend as their chunks are being accessed. If a 104

Abvralle f@ emmala sl avealllke maemila sma allas el (Eaarsare Slhamm 5 hyaws

Streaming Access to Remote Databases

Another use case that r3map can be used for is accessing a
remote database locally. While using a database backend (such
as the ScylllaDB backend introduced earlier) is one option of
storing the chunk, this use case is particularly interesting for
file-based databases like SQLite that don’t define a wire
protocol. Using r3map, instead of having to download an entire
SQLite database before being able to use it, it can instead be
mounted with the mount API, which then fetches the necessary
offsets from a remote backend storing the database as they are
being accessed. For most queries, not all data in a database is
required, especially if indexes are used; this makes it possible to
potentially reduce the amount of transferred data by streaming
in only what is required.

Since reads are cached using the local backend with the 105

manaced mount API. onlv the first read should potentiallv have

Making Arbitrary File Formats Streamable

In addition to making databases streamable, r3map can also be
used to access files in formats that usually don’t support being
accessed before they are fully available locally. One such format
is MP4; usually, if a user downloads a MP4 file, they can’t start
playback before the file is available locally completely. This is
because MP4 typically stores metadata at the end of the file.

The reason for this being stored at the end is usually that the
parameters required for this metadata requires encoding the
video first. This results in a scenario where, assuming that the
file is downloaded from the first to the last offset, the client
needs to wait for the file to be completely accessible locally
before playing it. While MP4 and other formats supports ways
to encode such metadata in the beginning or once every few

chunks in order to make them streamable, this is not the case 106

B mmmrrr @ lrraeAle EeesasSmer SBllam avmAl mAATEARraEE sl A Rare

Streaming App and Game Assets

Another streaming use case relates to the in-place streaming of
assets. Usually, a game needs to be fully downloaded before it is
playable; for many modern high-budget titles, this can be
hundreds of gigabytes of data, resulting in very long download
times even on fast internet connections. Usually however, not
all assets need to be downloaded before the game can be played;
only some of them are, i.e. the launcher, Ul libraries or the first
level’s assets. While theoretically it would be possible to design
a game engine in such a way that assets are only fetched from a
remote as they are being required, this would require extensive
changes to most engine’s architecture, and also be hard to port
back to existing titles; furthermore, current transparent
solutions that can fetch in assets (i.e. mounting a remote NBD
drive or FUSE) are unlikely to be viable solutions considering

their high sensitivity to network latency and the high network 107

Modelling State

Synchronization of app state is a fairly complex problem, and
even for simple scenarios, a custom protocol is typically built
for apps. While it is possible to use real-time databases like
Firebase to synchronize some application states, Firebase and
similar solutions to it are usually limited in which data
structures they can store and require specific APIs to
synchronize them. Usually, even for a simple migration of state
between two hosts, synchronization requires state to be
manually marshalled, sent over a network, received on a
destination host, and unmarshalled. This requires a complex
synchronization protocol, and decisions such as when to
synchronize state and when to start pulling from the remote
need to be made manually, which often results in a database on
a third host being used even for simple migrations from one

host to another instead of implementing a peer-to-peer process. '8

Mounting State

By allocating all structures on r3map’s provided mmaped byte
slice, many interesting use cases become possible. For example,
a TODO app could use it as its backend. Once loaded, the app
mounts the TODO list as a byte slice from a remote server using
the managed mount API; since authentication is pluggable and
i.e. a database backend like ScylllaDB with a prefix for this user
provides a way to do both authentication and authorization,
such an approach can scale fairly well. Using the preemptive
background pull system, when the user connects, they can not
only start streaming in the byte slice from the remote server as
the app is accessing it, but also pull the majority of the
required data first by using the pull heuristic function. If the
TODO list is modified by changing it in the mmaped memory
region, the changes are asynchronously written back to the

underlying block device, and thus to the local backend, where 10

Migrating State

In addition to using managed mounts to access remotely stored
application state, migration of arbitrary app state also becomes
a possibility. If a user has a TODO app running on a host like
their smartphone, but wants to continue writing a task
description on their desktop system, they can migrate the app’s
state directly and without a third party/remote database by
using r3map. For this use case, the migration API can be used.
In order to optimize the migration, the pre-copy phase can be
started automatically, i.e. if the phone and desktop are
physically close to each other or in the same network; in such a
LAN migration case, the process is able to benefit from low
latencies and high throughput. It is also possible to integrate
the migration API deeply with system events, i.e. by registering
a service that migrates applications off a system before a

shutdown procedure completes. —

Migrating Virtual Machines

It is important to note that there are a few limitations with
synchronizing and migrating an application’s internal stateful
data structures this way; locking is not handled by r3map and
would need to be done using a higher-level protocol; moreover,
this assumes that the in-memory representation of the data
structure is consistent across all hosts, something which is not
necessarily the case with programming languages such as Go
with multiple processor architectures being involved. While
projects such as Apache Arrow[70] allow for application state to
represented in a language and CPU architecture independent
way, this comes with some of the same restrictions on which
state can be synchronized as with other solutions such as
Firebase.

In order to keep the possibility of migrating arbitrary state, but ,;;

allaa alllmss Samr AarEE R ey s masraram S sa e WM& e T5va srEvayd)

Summary

Summary

As is evident from the discussion, there are multiple ways and
configurations for implementing a solution for universally
accessing, synchronizing and migrating memory regions, with
the individual configurations having different strengths and
weaknesses as shown by the benchmarks, making them each

suitable for different use cases.

When it comes to access methods, userfaultfd is an interesting
API that is idiomatic to both Linux in as a first-party solution
and Go due to its fairly low implementation overhead. This
approach however falls short when it comes to throughput,
especially when used in WAN, where other options can provide
better performance. The delta synchronization method for
mmaped files provides a simple way of memory synchronization

for specific scenarios, but does have a very significant I/O and |,

AYARSAATAS T N A Asura Pl REEm A AlnE bAy Sit@ mvallllSimee semAl The@ElmSmE TEYATE S A AR EY A B

Conclusion

Conclusion

The proposed solution consisting of the direct mount, managed
mount and migration APIs as implemented in the form of the
r3map library present an efficient method of accessing,
synchronizing and migrating remote memory regions over a
network, with example use cases and benchmarks showing that
r3map is able to provide both throughput and latency
characteristics that make it possible to use as part of

applications today.

ram—dl demonstrates how minimal r3map’s implementation
overhead is by implementing a system to share and mount a
remote system’s memory in under 300 source lines of code,
while tapisk shows that the APIs can be used to efficiently map
almost any resource, including a linear-access tape drive, to the

concepts provided. Aside from these examples, the proposed 113

Al S aem allas mamllaem mrecame mrrssaallke et TNEE PEEEE SEREYE SerE s

Bibliography

Bibliography

1]

W. Mauerer, Professional linux kernel architecture. Indi-
anapolis, IN: Wiley Publishing, Inc., 2008, pp. 24, 7-8,
474-487, 1026-1027.

A. S. Tanenbaum and A. S. Woodhull, “Operating sys-
tems: Design and implementation,” 3rd ed., Upper Saddle
River, NJ 07458: Pearson Education, Inc. Pearson Pren-
tice Hall, 2006, pp. 27-29.

D. DeVault, “A hare code generator for finding ioctl num-
bers” 2022. Accessed: Jul. 28, 2023. [Online|. Avail-
able: https://drewdevault.com/2022/05/14/generating-
ioctls.html

Kernel Development Community, “Quick start.” 2023.
Accessed: Jul. 19, 2023. [Online]. Available: https:
//www.kernel.org/doc/html/next/rust/quick-start.html

R. Love, Linux kernel development, 3rd ed. Pearson Edu-

114

https://drewdevault.com/2022/05/14/generating-ioctls.html
https://drewdevault.com/2022/05/14/generating-ioctls.html
https://www.kernel.org/doc/html/next/rust/quick-start.html
https://www.kernel.org/doc/html/next/rust/quick-start.html
https://doi.org/10.1145/356887.356892
https://aws.amazon.com/blogs/aws/new-offline-tape-migration-using-aws-snowball-edge/
https://aws.amazon.com/blogs/aws/new-offline-tape-migration-using-aws-snowball-edge/
https://arxiv.org/abs/2305.03943
https://arxiv.org/abs/2305.03943
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.kernel.org/doc/html/latest/power/swsusp.html
https://www.kernel.org/doc/html/latest/power/swsusp.html
https://lccn.loc.gov/2017043464
https://www.usenix.org/conference/hotstorage17/program/presentation/choi
https://www.usenix.org/conference/hotstorage17/program/presentation/choi
https://www.infoq.com/articles/inotify-linux-file-system-event-monitoring/
https://www.infoq.com/articles/inotify-linux-file-system-event-monitoring/
https://doi.org/10.17487/RFC0793
https://doi.org/10.17487/RFC0768
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC9000
https://doi.org/10.1145/3098822.3098842
https://www.usenix.org/conference/fast18/presentation/xiao
https://www.usenix.org/conference/fast18/presentation/xiao
https://github.com/libfuse/libfuse/blob/master/example/hello.c
https://github.com/libfuse/libfuse/blob/master/example/hello.c
https://commons.wikimedia.org/w/index.php?title=File:FUSE_structure.svg&oldid=762474154
https://commons.wikimedia.org/w/index.php?title=File:FUSE_structure.svg&oldid=762474154
https://commons.wikimedia.org/w/index.php?title=File:FUSE_structure.svg&oldid=762474154
https://www.usenix.org/conference/fast17/technical-sessions/presentation/vangoor
https://www.usenix.org/conference/fast17/technical-sessions/presentation/vangoor
https://www.usenix.org/conference/fast17/technical-sessions/presentation/vangoor
https://github.com/s3fs-fuse/s3fs-fuse
https://github.com/s3fs-fuse/s3fs-fuse
https://github.com/libfuse/sshfs
https://github.com/NetworkBlockDevice/nbd/blob/master/doc/proto.md
https://github.com/NetworkBlockDevice/nbd/blob/master/doc/proto.md
https://lore.kernel.org/lkml/20130402194120.54043222C0@clements/
https://lore.kernel.org/lkml/20130402194120.54043222C0@clements/
https://manpages.ubuntu.com/manpages/lunar/en/man8/nbd-client.8.html
https://manpages.ubuntu.com/manpages/lunar/en/man8/nbd-client.8.html
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0132
https://doi.org/10.1109/TLA.2015.7106373
https://grpc.io/docs/what-is-grpc/introduction/
https://grpc.io/docs/what-is-grpc/introduction/
https://frpc.io/getting-started/overview
https://frpc.io/getting-started/overview
https://github.com/loopholelabs/frisbee-go
https://github.com/loopholelabs/frisbee-go
https://github.com/loopholelabs/polyglot
https://redis.io/docs/about/
https://redis.io/docs/about/
https://redis.io/docs/interact/pubsub/
https://redis.io/docs/interact/pubsub/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://min.io/docs/minio/kubernetes/upstream/administration/concepts.html
https://min.io/docs/minio/kubernetes/upstream/administration/concepts.html
https://min.io/docs/minio/kubernetes/upstream/administration/concepts.html
https://doi.org/10.1145/1773912.1773922
https://www.scylladb.com/wp-content/uploads/wp-apache-cassandra-4-performance-benchmark-3.pdf
https://www.scylladb.com/wp-content/uploads/wp-apache-cassandra-4-performance-benchmark-3.pdf
https://www.scylladb.com/wp-content/uploads/wp-apache-cassandra-4-performance-benchmark-3.pdf
https://github.com/pojntfx/r3map
https://lwn.net/Articles/656731/
https://lwn.net/Articles/656731/
https://github.com/loopholelabs/userfaultfd-go
https://github.com/loopholelabs/userfaultfd-go
https://github.com/pojntfx/stfs/blob/main/pkg/fs/filesystem_test.go
https://github.com/pojntfx/stfs/blob/main/pkg/fs/filesystem_test.go
https://pkg.go.dev/github.com/spf13/afero#Fs
https://pkg.go.dev/github.com/spf13/afero#Fs
https://github.com/pojntfx/stfs
https://github.com/jakWai01/sile-fystem
https://github.com/pojntfx/go-nbd
https://www.cockroachlabs.com/blog/the-cost-and-complexity-of-cgo/
https://www.cockroachlabs.com/blog/the-cost-and-complexity-of-cgo/
https://www.cockroachlabs.com/blog/the-cost-and-complexity-of-cgo/
https://github.com/pojntfx/weron
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/block/nbd.c#n2592
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/block/nbd.c#n2592
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/block/nbd.c#n2592
https://github.com/pojntfx/dudirekta
https://github.com/pojntfx/dudirekta/blob/main/cmd/dudirekta-example-webrtc-peer/main.go
https://github.com/pojntfx/dudirekta/blob/main/cmd/dudirekta-example-webrtc-peer/main.go
https://jsonlines.org/
https://frpc.io/performance/grpc-benchmarks
https://frpc.io/performance/grpc-benchmarks
https://github.com/pojntfx/networked-linux-memsync
https://github.com/pojntfx/networked-linux-memsync
https://docs.kernel.org/block/ublk.html
https://docs.kernel.org/block/ublk.html
https://github.com/pojntfx/ram-dl
https://github.com/pojntfx/tapisk
https://www.lto.org/2020/09/the-lto-program-releases-specifications-for-upcoming-generation-9/
https://www.lto.org/2020/09/the-lto-program-releases-specifications-for-upcoming-generation-9/
https://www.lto.org/2020/09/the-lto-program-releases-specifications-for-upcoming-generation-9/
https://web.archive.org/web/20210130152901/https://www.adobe.com/devnet/video/articles/mp4_movie_atom.html
https://web.archive.org/web/20210130152901/https://www.adobe.com/devnet/video/articles/mp4_movie_atom.html
https://web.archive.org/web/20210130152901/https://www.adobe.com/devnet/video/articles/mp4_movie_atom.html
https://arrow.apache.org/

	Erklärung der Urheberschaft
	
	Kurzfassung
	Introduction
	Technology
	User Space and Kernel Space
	Linux Kernel
	UNIX Signals and Sockets
	Memory Optimization
	Memory in Linux
	Page Faults
	mmap
	inotify
	Linux Kernel Caching
	Networking
	Delta Synchronization
	File Systems in User Space (FUSE)
	Network Block Device (NBD)
	Virtual Machine Live Migration
	Streams and Pipelines
	Go
	RPC Frameworks
	Data Stores

	Planning
	Pull-Based Synchronization With userfaultfd
	Push-Based Synchronization With mmap and Hashing
	Push-Pull Synchronization with FUSE
	Mounts with NBD
	Push-Pull Synchronization with Mounts
	Pull-Based Synchronization with Migrations

	Implementation
	Userfaults in Go with userfaultfd
	File-Based Synchronization
	FUSE Implementation in Go
	NBD with go-nbd
	Managed Mounts with r3map
	Live Migration
	Pluggable Encryption, Authentication and Transport
	Concurrent Backends
	Remote Stores as Backends
	Concurrent Bidirectional RPCs with Dudirekta
	Connection Pooling with gRPC
	Optimizing Throughput with fRPC

	Results
	Testing Environment
	Access Methods
	Initialization
	Chunking
	RPC Frameworks
	Backends

	Discussion
	Userfaults
	File-Based Synchronization
	FUSE
	Direct Mounts
	Managed Mounts
	Chunking
	RPC Frameworks
	Backends
	Limitations
	Using Mounts for Remote Swap with ram-dl
	Mapping Tape Into Memory With tapisk
	Improving Cloud Storage Clients
	Universal Database, Media and Asset Streaming
	Universal App State Mounts and Migrations

	Summary
	Conclusion
	Bibliography

