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Introduction

- Today, there are many ways of accessing a remote resource: File,
database or custom API
- Similarly so, synchronizing a resource is a problem that is handled at

a case-by-case basis
- Using a 3rd party (database, OS service for file synchronization)
- Custom synchronization protocol

- Migration of a resource is also very complex task
- Moving a resource between two hosts often uses APIs that are really
meant for synchronization (i.e. databases)
- Slow and require internet access
- Almost always proprietary to an app

- This is despite a resource being almost always represented by a
memory region or file

- What if instead of accessing, synchronizing and migrating a resource
with application-specific protocols and abstraction, we could do it

universally, for any memory region?



Technology



User Space and Kernel Space

- Kernel
- Core of the operating system
- Direct interacts with hardware
- Manages system ressources (CPU time, memory etc.)
- Enforces security policies
- Responsible for progress scheduling, memory management and
drivers
- Kernel space is the memory region in which the kernel is stored and
executes in
- User space
- Portion of system memory where user mode applications execute
- Applications can't directly access hardware or kernel memory, will
need to use an API to get access[1]
- Syscalls
- Serve as the API between user space and kernel space
- Makes it possible for applications in user space to access low-level
OS services



The Linux Kernel

- Open-Source kernel created by Linus Torvals in 1991

- Written in C, with recently Rust being added as an additional allowed
language[s]

- Powers millions of devices worldwide (servers, desktops, phones,
embedded devices)

- Is a bridge between applications and hardware
- Provides an abstraction layer
- Compatible with many architectures (ARM, x86, RISC-V etc.)

- Is not an operating system in itself, but is usually made an operating
system by a distribution[5]

- Distributions add userspace tools (e.g. GNU coreutils or BusyBox),
desktop environments and more, turning into a full operating system

- Is a good fit for this thesis due to it's open-source nature (allows
anyone to view, modify and contribute to the source code)



Linux Kernel Modules

- Linux kernel is monolithic, but extensible thanks to kernel
modules[5]

- Small pieces of kernel-level code that can be loaded and unloaded
as kernel modules

- Can extend the kernel functionality without reboots

- Are dynamically linked into the running kernel

- Helps keep kernel size manageable and maintainable

- Kernel modules are written in C

- Interact with kernel through APIs

- Poorly written modules can cause signficant kernel instability

- Modules can be loaded at boot time or dynamically (modprobe,
rmmod etc.)[6]

- Module lifecycle can be implemented with initialization and cleanup

functions



UNIX Signals and Handlers

- Signals
- Are software interrups that notify a process of important events
(exceptions etc.)

- Can originate from the kernel, user input or different processes
- Function as an asynchronous communication mechanism between
processes or the kernel and a process

- Have default actions, i.e. terminating the process or ignoring a
signal[7]

- Handlers

- Can be used to customize how a process should respond to a signal
- Can be installed with sigaction ()[8]

- Signals are not designed as an IPC mechanism, since they can only
alert of an event, but not of any additional data for it



UNIX Sockets

- Overview
- Allow processes on the same host system to communicate with each
other[9]
- Unlike UNIX signals, they can be used for IPC with addition data
- Are also available in Linux
- Types
- Stream sockets use TCP to provide reliable, two-way,
connection-based byte streams, making them optimal for
applications that need strong consistency
- Datagram sockets use UDP, and thus allow for connection-less
communication with less guarantees, prioritizing speed
- Named and unnamed
- Named UNIX sockets are a special file type on the file system and can
be identified as a path, and allow easy communication between
unrelated processes
- Unnamed UNIX sockets exist only in memory and disappear after the
creating process terminates



Memory Hierarchy

- Memory in computers can be classified based on size, speed, cost
and proximity to the CPU

- Principle of locality: The most frequently accessed data and
instructions should be in the closest memory[10]

- Locality is important mostly due to the “speed of the cable” -
throughput (due to dampening) and latency (due to being limited by
the speed of light) decreases as distance increases

- Registers
- Closest to the CPU
- Very small amount of storage (32-64 bits of data)
- Used by the CPU to perform operations
- Very high speed, but limited in storage size
- Cache Memory
- Divided into U1, L2 and L3
- The higher the level, the larger and less expensive a layer
- Buffer for frequently accessed data



Memory Management in Linux

- Memory management is a crucial part of every operation system -
maybe even the whole point of an operating system
- Creates buffer between applications and physical memory
- Can provide security guarantees (e.g. only one process can access it's
memory)
- Kernel space
- Runs the kernel, kernel extensions, device drivers
- Managed by the kernel memory module
- Uses slab allocation (groups objects of the same size into caches,
speeds up memory allocation, reduces fragmentation of the
memory)[12]
- User space
- Applications (and some drivers) store their memory here[13]
- Managed through a paging system
- Each application has it's own private virtual address space
- Virtual address space divided into pages of 4 KB 9



Swap Space

- A portion of the secondary storage is for virtual memory[13]
- Essential for systems running multiple applications
- Moves inactive parts of ram to secondary storage to free up space for
other processes
- Implementation in Linux
- Linux uses a demand paging system: Memory is only allocated when
it is needed
- Can be either a swap partition (separate area of the secondary
storage) or file (regular file that can be expanded/trucnated)
- Swap paritions and files are transparent to use
- Kernel uses a LRU algoruithm for deciding which pages
- Role in hiberation
- Before hibernating, the system saves the content of RAM into swap
(where it is persistent)
- When resuming, memory is read back from swap

- Role on performance 10



Page Faults

- Page faults occur when the process tries to access a page not
available in primary memory, which ause the OS to swap the
required page from secondary storage into primary memory[6]

- Types

- Minor page faults: Page is already in memory, but not linked to the
process that needs it
- Major page fault: Needs to be loaded from secondary storage
- The LRU (and simpler clock algorithm) can minimize page faults
- Techniques for handling page faults
- Prefetching: Anticipating future page requests and loading them into
memory in advance
- Page compression: Compressing inactive pages and storing them in
memory pre-emptively (so that less major faults happen)[14]

- Usually, handling page faults is something that the kernel does

1



- Overview
- UNIX system call for mapping files or devices into memory
- Multiple possible usecases: Shared memory, file 1/0, fine-grained
memory allocation
- Commonly used in applications like databases
- Is a “power tool”, needs to be used carefully and intentionally
- Functionality
- Establishes direct link (memory mapping) between a file and a
memory region[15]
- When the system reads from the mapped memory region, it reads
from the file directly and vice versa
- Reduces overhead since no or less context switches are needed
- Benefits:
- Enables zero-copy operations: Data can be accessed directly as
though it were in memory, without having to copy it from disk first
- Can be used to share memory between processes without having to
g0 through the kernel with syscalls[7]



- Event-driven notification system of the Linux kernel[16]

- Monitors file system for events (i.e. modifications, access etc.)

- Uses a watch feature for monitoring specific events, e.g. only
watching writes

- Reduces overhead and ressource use compared to polling

- Widely used in many applications, e.g. Dropbox for file
synchronization

- Has limitations like the limit on how many watches can be
established



Linux Kernel Disk and File Caching

- Disk caching
- Temporarely stores frequently accessed data in RAM
- Uses principle of locality (see Memory Hierarchy)
- Implemented using the page cache subsystem in Linux
- Uses the LRU algorithm to manage cache contents
- File caching
- Linux caches file system metadata in the dentry and inode caches
- Metadata includes i.e. file names, attributes and locations
- This caching accelerates the resoluton of path names and file
attributes (i.e. the last change data for polling)
- File reads/writes pass through the disk cache
- Complexities
- Data consistency: Between the disk and cache via writebacks.
Aggressive writebacks lead to reduced performance, delays risk data
loss
- Release of cached data under memory pressure: Cache eviction

14
requires intelligent algorithms, i.e. LRU[6]



LAN and WAN

- RTT

- Round trip time (RTT) represents the time data takes to travel from a

source to a destination and back

- Provides an insight into application latency

- Varies according to many factors such as network type, system load

-+ LAN

and physical distance

- Local area networks (LAN) is network infrastructure in geographically

small areas[17]

- Often the network of a single data center or office

- Typically have a low RTT and thus latency due to a short number of

relays and the small distances that need to be travelled

- Perimeter security is often applied, where a LAN is seen as a trusted

- WAN

network that doesn’t require authentication between internal systems

- Wide area networks (WAN) span large geographical areas

- Most famous example is the open internet



TCP, UDP, TLS and QUIC

- TCP

- Connection-oriented

- Has been the reliable backbone of internet commmunication

- Guaranteed delivery and maintained data order

- Includes error checking, lost packet retransmission, and congestion

control mechanisms

- Powers the majority of the web[18]

- UDP

- Connectionless

- No reliability or ordered packet delivery guarantees

- Faster than TCP due to less guarantees

- Suitable for applications that require speed over reliability (i.e. online

- TLS

gaming, video calls etc.)[19]

- Encryption protocol that intents to secure communication over a

public network like the internet, has been updated many times to
evolve with time



Delta Synchronization

- Traditionally, when files are synchronized between hosts, the entire
file is transfered

- Delta synchronization is a technique that intents to instead transfer
only the part of the file that has changed

- Can lead to reduced network and /0 overhead

- The probably most popular tool for file synchronization like this is
rsync

- When a delta-transfer algorithm is used, it computes the difference
between the local and the remote file, and then synchronizes the
changes

- The delta sync algorithm first does file block division

- The file on the destination is divided into fixed-size blocks

- For each block in the destination, a weak and fast checksum is
calculated

- The checksums are sent over to the source L4



File Systems In Userspace (FUSE)

- Software interface that allows writing custom file systems in
userspace

- Developers can create file systems without having to engage in
low-level kernel development

- Available on multiple platforms, mostly Linux but also macOS and
FreeBSD

- In order to implement file systems in user space, we can use the
FUSE API

- Here, a user space program registers itself with the FUSE kernel
module

- This program provides callbacks for the file system operations,
e.g. for open, read, write etc.

- When the user performs a file system operation on a mounted FUSE
file system, the kernel module will send a request for the operation
to the user space program, which can then reply with a response, 18



Network Block Device (NBD)

- NBD uses a protocol to communicate between a server (provided by
user space) and a client (provided by the NBD kernel module)

- The protocol can run over WAN, but is really mostly designed for LAN
or localhost usage

- It has two phases: Handshake and transmission[24]

- There are multiple actors in the protocol: One or multiple clients, the
server and the virtual concept of an export

- When the client connects to the server, the server sends a greeting
message with the server’s flags

- The client responds with its own flags and an export name (a single
NBD server can expose multiple devices) to use

- The server sends the export’s size and other metadata, after which
the client acknowledges the received data and the handshake is
complete

- After the handshake, the client and server start exchanging ®



Pre-Copy

- While these systems already allow for some optimizations over
simply using the NBD protocol over WAN, they still mean that chunks
will only be fetched as they are being needed, which means that
there still is a guaranteed minimum downtime

- In order to improve on this, a more advanced API (the managed
mount API) was created

- A field that tries to optimize for this use case is live migration of VMs

- Live migration refers to moving a virtual machine, its state and
connected devices from one host to another with as little downtime
as possible

- There are two types of such migration algorithms; pre-copy and
post-copy migration

- Pre-copy migration works by copying data from the source to the
destination as the VM continues to run (or in the case of a generic
migration, app/other state continues being written to) 20



Post-Copy

- An alternative to pre-copy migration is post-copy migration

- In this approach, the VM is immediately suspended on the source,
moved to the destination with only a minimal set of chunks

- After the VM has been moved to the destination, it is resumed

- If the VM tries to access a chunk on the destination, a page fault is
raised, and the missing page is fetched from the source, and the VM
continues to execute

- The benefit of post-copy migration is that it does not require
re-transmitting dirty chunks to the destination before the maximum
tolerable downtime is reached

- The big drawback of post-copy migration is that it can result in
longer migration times, because the chunks need to be fetched from

the network on-demand, which is very latency/RTT-sensitive[25]

21



Workload Analysis

- “Reducing Virtual Machine Live Migration Overhead via Workload
Analysis” provides an interesting analysis of options on how this
decision of when to migrate can be made[26]

- While being designed mostly for use with virtual machines, it could
serve as a basis for other applications or migration scenarios, too

- The proposed method identifies workload cycles of VMs and uses
this information to postpone the migration if doing so is beneficial

- This works by analyzing cyclic patters that can unnecessarily delay a
VM’'s migration, and identifies optimal cycles to migrate VMs in from
this information

- For the VM use case, such cycles could for example be the GC of a
large application triggering a lot of changes to the VMs memory etc.

- If a migration is proposed, the system checks for whether it is
currently in a beneficial cycle to migrate in which case it lets the
migration proceed; otherwise, it postpones it until the next cycle 22



Streams and Pipelines

- Fundamental concepts in computer science
- Sequentually process elements
- Allow for the efficient processing of large amounts of data, without
having to load everything into memory
- Form the backbone of efficient, modular data processing
- Streams
- Represent a continous sequence of data
- Can be a source or destination of data (i.e. files, network connections,
stdin/stdout etc.)
- Allow processing of data as it becomes available
- Minimized memory consumption
- Especially well suited for long-running processes (where data gets
streamed in for a extended time)[27]
- Pipelines
- Series of data processing stages: Output of one stage serves as input
to the next[28] 23



- Overview

- Is a statically typed, compiled, open-source language by Google
launched in 2009[29]

- Known for it's simplicity

- Developed to address the unsuitability of traditional languages for
modern, distributed systems development

- Built with input from many original UNIX developers, like Rob Pike
and Ken Thompson

- Popular particularly in cloud services and network programming

- Goroutines
- Headline feature of Go
- Enables concurrent function execution
- Similar to threads conceptually, but much more scalable to millions
of Goroutines per program
- Synchronization and data transfer between Goroutines is done by

channels, typed, concurrency-safe conduits for data
2%



gRPC

- Open-Source and high-performance RPC framework
- Developed by Google in 2015
- Features
- Uses HTTP/2 as the transport protocol to benefit from header
compression and request multiplexing
- Uses protobuf as the IDL and wire format, a high-performance,
polyglot mechanism for data serialization (instead of the slower and
more verbose JSON of REST APIs)
- Supports unary RPCs, server-streaming RPCs, client-streaming RPCs
and bidirectional RPCs
- Has pluggable support for load balancing, tracing, health checking
and authentication[30]j
- Supports many languages (Go, Rust, JS etc.)
- Developed by the CNCF

25



fRPC and Polyglot

- fRPC
- Is an Open-Source RPC framework released by Loophole Labs in 2022
- proto3-compatible, meaning that it can be used as a drop-in
replacement for gRPC that promises better performance
characteristics
- Has the ability to stop the RPC system and retrieve an underlying
connection, making it possible to re-use connections for different
purposes [31]
- Uses frisbee, a messaging framework to implement the
request-response semantics [32]
- Polyglot
- Is the high-performance serialization framework used by fRPC
- Works similarly to protocol buffers, but is much simpler and carries
less legacy code
- Is also language independent, with current implementations for Go,

Rust and TypeScript[33]
26



- In-memory data structure store

- Used as a database, cache and/or message broker

- Created by S. Sanfilippo in 2009

- Different from other NoSQL databases by supporting various data
structures like lists, sets, hashes or bitmaps

- Uses in-memory data storage for maximum speed and efficiency[34]

- Allows for low-latency reads/writes

- While not intended for persistance, it is possible to store data on disk

- Has a non-blocking I/0 model and offers near real-time data
processing capabilities

- Includes a pub-sub system to be able to function as a message
broker[35]

27



S3 and Minio

- S3

- Object storage service for data-intensive workloads
- Offered by AWS
- Can be globally distributed to allow for fast access times from

anywhere on the globe

- Range of storage classes with different requirements
- Includes authentication and authorization
- Exposes HTTP API for accessing the stored folders and files[36]

- Minio

- Open-source storage server compatible wiht S3

- Lightweight and simple, written in Go

- Can be hosted on-prem and is open source

- Allows horizontal scalability to storage large amounts of data across

nodes[37]

28



Cassandra and ScylllaDB

- Popular wide-column NoSQL databases
- Combines Amazon’'s Dynamo model and Google’s Bigtable model to
create a highly available database
- Apache Cassandra
- Highly scalable, eventually consistent
- Can handle large amounts of data across many servers with no single
point of failure
- Consistency can be tuned according to needs (eventual to strong)
- Doesn't use master nodes due to it's use of a P2P protocol and
distributed hash ring design
- Does have high latency under heavy load and requires fairly complex
configuration[38]
- ScyllaDB

- Launched in 2015
- Written in C++ and has a shared-nothing architecture, unlike

Cassandra which is written in Java 29
e Camnatihle with Caceandra’e ADPI and Aata madall20]
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Pull-Based Synchronization With userfaultfd

- An implementation of post-copy migration

- Memory region is created on the destination host

- Reads to the region by the migrated ressource trigger a page fault

- When we encounter such a page fault, we want to fetch the relevant
offset from the remote

- Typically, page faults are resolved by the Kernel

- Here, we want to handle handle the page faults in user space

- Traditionally, it was possible to use SIGSEGV signal handlers to use
handle this from the program

- This however is complicated and slow

- Instead we use a new kernel API (“Userfaults”)

- We register the region to be handled by userfault

- Then we start an handler that fetches the offsets from the remote on
a page fault

- This handler is connected to the registered region using a file 30



Push-Based Synchronization With mmap and Hashing

- As mentioned before mmap allows mapping a memory region to a
file

- We can put the migratable ressource into this memory region

- If we get writes to the region, we eventually get writes to the region

- If we're able to detect these writes and copy them to the destination,
we can implement a pre-copy migration system

- mmaped regions still using caching to speed up reads

- Changes from the region can be flushed to the disk with msync

- Usually we could use inotify to detect changes to the file, but inotify
doesn’'t work with mmaped regions

- As a result, we went for a polling-based solution instead

- Polling has drawbacks, which we tried to work around upon in our
implementation

31



Push-Pull Synchronization with FUSE

- Can serve as the basis for a pre- or post-copy migration

- Similarly to the file-based synchronization we mmap a file into
memory

- The file is stored on a custom file system

- We then catch reads (for a post-copy migration) or writes (for a
pre-copy migration)

- Implementing a file system in the kernel is possible but cumbersome
as described before

- With FUSE we can implement the file system in user space, making

this much simpler, as we'll show in the implementation

32



Mounts with NBD

- Another mmap-based solution for pre- and/or post-copy migration

- Instead of mmaping a file, a device is mmaped

- This device is a block device provided by a NBD client

- We can then connect the NBD client to a remote NBD server, which
contains the migratable resource

- Any reads to/from the region go to/from the block device and are
resolved by the remote NBD server

- Isn't per se a synchronization methods on it's own, but rather a
remote mount

- Unlike a FUSE this means we only need to implement a block device,
not a full file system

- Implementation and performance overhead of a NBD server is fairly
low as we'll show in the implementation however

138



Push-Pull Synchronization with Mounts

- Also tracks changes to the memory region of the migratable
ressource using NBD
- Limitations of the NBD protocol in WAN
- Usually, the NBD server and client don't run on the same system
- NBD was originally designed to used as a LAN protocol to access a
remote hard disk
- As mentioned before, NBD can run over WAN, but is not designed for
this
- The biggest problem with running NBD over a public network, even if
TLS is enabled is latency
- Individual chunks would only be fetched to the local system as they
are being accessed, adding a guaranteed minimum latency of at least
the RTT
- Instead of directly connecting a client to a remote server, we add a
layer of indirection, called a Mount that consists of both a client and

a server, both running on the local system 2

- Combinine the NBD server and client to a reusable unit



Pull-Based Synchronization with Migrations

- Also tracks changes to the memory region of the migratable
ressource using NBD

- Optimization mounts for migration scenarios

- We have now implemented a managed mounts API

- This API allows for efficient access to a remote resource through
memory

- Itis however not well suited for a migration scenario

- For migrations, more optimization is needed to minimize the
maximum acceptable downtime

- For the migration, the process is split into two distinct phases

- The same preemptive background pulls and parallelized
device/syncer startup can be used, but the push process is dropped

- The two phases allow pulling the majority of the data first, and only
finalize the move later with the remaining data

- This is inspired by the pre-copy approach to VM live migration, but
also allows for some of the benefits of the post-copy approach as

35
we'll see later
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Userfaults in Go with userfaultfd

- General functionality

- By listening to page faults, we know when a process wants to access a
specific piece of memory

- We can use this to then pull the chunk of memory from a remote,
map it to the address on which the page fault occured, thus only
fetching data when it is required

- Usually, handling page faults is something that the kernel does

- In our case, we want to handle page faults in userspace, and
implement post-copy with them

- In the past, this used to be possible from userspace by handling the
SIGSEGV signal in the process

- In our case however, we can use a recent system called userfaultfd to
do this in a more elegant way (available since kernel 411)

- userfaultfd allows handling these page faults in userspace

- The region that should be handled can be allocated with e.g. mmap

- Once we have the file descriptor for the userfaultfd API, we need to

transfer this file descriptor to a process that should respond with the 3



File-Based Synchronization

- File-based synchronization

- We can do this by using mmap, which allows us to map a file into
memory

- By default, mmap doesn’t write changes from a file back into memory,
no matter if the file descriptor passed to it would allow it to or not

- We can however add the MAP_SHARED flag; this tells the kernel to
write back changes to the memory region to the corresponding
regions of the backing file

- Linux caches reads to such a backing file, so only the first page fault
would be answered by fetching from disk, just like with userfaultfd

- The same applies to writes; similar to how files need to be synced in
order for them to be written to disks, mmaped regions need to be
msynced in order to flush changes to the backing file

- In order to synchronize changes to the region between hosts by
syncing the underlying file, we need to have the changes actually be
represented in the file, which is why msync is critical

- For files, you can use O_DIRECT to skip this kernel caching if your 37



FUSE Implementation in Go

- Implementing a FUSE in Go means tight integration with libraries
- It makes sense to divide the process into two aspects
- Creating a backend for a file system abstraction API like afero.Fs
- By using a file system abstraction API like afero.Fs, we can separate
the FUSE implementation from the actual file system structure,
making it unit testable and making it possible to add caching in user
space (code snippet from
https://github.com/pojntfx/stfs/blob/main/pkg/fs/file.go)
- Itis possible to use even very complex and at first view
non-compatible backends as a FUSE file system’s backend
- For example, STFS used a tape drive as the backend, which is not
random access, but instead append-only and linear
(https://github.com/pojntfx/stfs/blob/main/pkg/operations/update.go)
- By using an on-disk index and access optimizations, the resulting file
system was still performant enough to be used, and supported
almost all features required for the average user
- Creating an adapter between the FS abstraction APl and the FUSE

38



NBD with go-nbd

- Overview
- Due to the lack of pre-existing libraries, a new pure Go NBD library
was implemented
- This library does not rely on CGo/a pre-existing C library, meaning
that a lot of context switching can be skipped
- Server
- The server is completely in user space, there are no kernel
components involved here
- The backend interface for go-nbd is very simple and only requires
four methods: ReadAt, WriteAt, Size and Sync
- The key difference here to the way backends were designed in
userfaultfd-go is that they can also handle writes
- A good example backend that maps well to a block device is the file
backend (code snippet from
https://github.com/pojntfx/go-nbd/blob/main/pkg/backend/file.go)
- go-nbd exposes a Handle function to support multiple users without

39
depending on a specific transport layer (code snippet from



- The ReadWriterAt pipeline

- In order to implement the chunking system, we can use a abstraction
layer that allows us to create a pipeline of readers/writers - the
ReadWriterAt, combining an io.ReaderAt and a io.WriterAt

- This way, we can forward the Size and Sync syscalls directly to the
underlying backend, but wrap a backend’'s ReadAt and WriteAt
methods in a pipeline of other ReadWriterAts

- One such ReadWriterAt is the ArbitraryReadWriterAt (code snippet from
https://github.com/pojntfx/r3map/blob/main/pkg/chunks/arbitrary_rwat.go)

- It allows breaking down a larger data stream into smaller chunks

- In ReadAt, it calculates the index of the chunk that the offset falls into
and the position within the offsets

- It then reads the entire chunk from the backend into a buffer, copies
the necessary portion of the buffer into the input slice, and repeats
the process until all requested data is read

- Similarly for the writer, it calculates the chunk’s index and offset

- If an entire chunk is being written to, it bypasses the chunking system, 40



Live Migration

- Overview

- As mentioned in Pull-Based Synchronization with Migrations before,
the mount API is not optimal for a migration scenario

- Splitting the migration into two separate phases can help a lot to fix
the biggest problem, the maximum guaranteed downtime

- The flexible architecture of the ReadWriterAt components allow the
reuse of lots of code for both the mount APl and the migration API

- Implementing the seeder

- The seeder defines a simple read-only RPC API with the familiar
ReadAt methods, but also new APIs such as returning dirty chunks
from Sync and adding a Track method (code snippet from
https://github.com/pojntfx/r3map/blob/main/pkg/services/seeder.go#L15-
L21)

- Unlike the remote backend, a seeder also exposes a mount through a
path, file or byte slice, so that as the migration is happening, the
underlying data can still be accessed by the application

- This fixes the issue that the mount API had for migrations, where only



Pluggable Encryption and Authentication

- Compared to existing remote mount and migration solutions, r3map
is a bit special

- As mentioned before, most systems are designed for scenarios where
such resources are accessible in a high-bandwidth, low-latency LAN

- This means that some assumptions concerning security,
authentication, authorization and scalability were made that can not
be made here

- For example encryption; while for a LAN deployment scenario it is
probably assumed that there are no bad actors in the subnet, the
same can not be said for WAN

- While depending on e.g. TLS etc. for the migration could have been
an option, r3map should still be useful for LAN migration use cases,
too, which is why it was made to be completely transport-agnostic

- This makes adding encryption very simple

- E.g. for LAN, the same assumptions that are being made in existing 82



Optimizing Backends For High RTT

- In WAN, where latency is high, the ability to fetch chunks
concurrently is very important

- Without concurrent background pulls, latency adds up very quickly
as every memory request would have at least the RTT as latency

- The first prerequisite for supporting this is that the remote backend
has to be able to read from multiple regions without locking the
backend globally

- For the file backend for example, this is not the case, as the lock
needs to be acquired for the entire file before an offset can be
accessed (code snippet from https://github.com/pojntfx/go-
nbd/blob/main/pkg/backend/file.go#L17-125)

- For high-latency scenarios, this can quickly become a bottleneck

- While there are many ways to solve this, one is to use the directory
backend

- Instead of using just one backing file, the directory backend is a 43



Using Remote Stores as Backends

- Using key-value stores as ephemeral mounts

- RPC backends provide a way to access a remote backend

- This is useful, esp. if the remote resource should be protected in
some way or if it requires some kind of authorization

- Depending on the use case however, esp. for the mount API, having
access to a remote backend without this level of indirection can be
useful

- Fundamentally, a mount maps fairly well to a remote random-access
storage device

- Many existing protocols and systems provide a way to access
essentially this concept over a network

- One of these is Redis, an in-memory key-value store with network
access

- Chunk offsets can be mapped to keys, and bytes are a valid key type,
so the chunk itself can be stored directly in the KV store (code
snippet from
https://github.com/pojntf></r3map/blob/main/pkg/backend/redis.go#L36[14



Bi-Directional and Concurrent RPCs with Dudirekta

- Overview of the framework and why a custom one was implemented
- Designed specifically with the hybrid pre- and post-copy scenario in
mind
- Support for concurrent RPCs allows for efficient background pulls
since multiple chunks can be pulled at the same time
- Bi-directional API makes it possible to initiate pre-copy migrations
and transfer chunks from the source host without having to make the
destination host dialable
- Dudirekta supports defining functions on both the client and the server
- This is very useful for implementing e.g. a pre-copy protocol where the
source pushes chunks to the destination by simply calling a RPC on the
destination, instead of the destination calling a RPC on the source
- Usually, RPCs don't support exposing or calling RPCs on the client, too,
only on the server
- This would mean that in order to implement a pre-copy protocol with
pushes, the destination would have to be dialable from the source
- In a LAN scenario, this is easy to implement, but in WAN it is

45
complicated and requires authentication of both the client and the



Connection Pooling with gRPC

- Drawbacks of Dudirekta

- While the dudirekta RPC serves as a good reference implementation
of the basic RPC protocol, it does not scale particularly well

- This mostly stems from two aspects of how it is designed

- JSON(L) is used for the wire format, which while simple and easy to
analyze, is slow to marshal and unmarshal

- Dudirekta’s bi-directional RPCs do however come at the cost of not
being able to do connection pooling, since each client dialing the
server would mean that the server could not reference the multiple
client connections as one composite client without changes to the
protocol

- While implementing such a pooling mechanism in the future could be
interesting, it turned out to not be necessary thanks to the pull-based
pre-copy solution described earlier

- Instead, only calling RPCs exposed on the server from the client is the
only requirement for an RPC framework, and other, more optimized

RPC frameworks can already offer this 40



Optimizing RPC Throughput and Latency with fRPC

- Despite these benefits, gRPC is not perfect however

- Protobuf specifically, while being faster than JSON, is not the fastest
serialization framework that could be used

- This is especially true for large chunks of data, and becomes a real
bottleneck if the connection between source and destination would
allow for a high throughput

- This is where fRPC, a RPC library that is easy to replace gRPC with,
becomes useful

- Because throughput and latency determine the maximum acceptable
downtime of a migration/the initial latency for mounts, choosing the
right RPC protocol is an important decision

- fRPC also uses the same proto3 DSL, which makes it an easy drop-in
replacement, and it also supports multiplexing and connection
polling

- Because of these similarities, the 47



Results




Testing Environment

- Hardware specifications
- Benchmark scripts are reproducible (add link here)
- Multiple runs were done for each measurement to ensure consistenly

48



Access Methods

- Latency for technologies

- Compared to disk and memory, all three other access methods
(userfaultfd, direct mounts, managed mounts) are slow

- Latency of accessing a chunk on userfaultfd is 15x slower than on disk

- Latency of accessing a chunk on direct mounts is 28x slower than on
disk, almost double the latency of userfaultfd

- Managed mounts is 40x slower than disk

- It is however important to consider the total scale: All of these are in
the scale of ps

- Interesting to see that managed mounts have a significantly higher
latency

- Looking at the distribution, we can see a similar pattern

- Spread for managed mount is the smallest, but there are significant
outliers up until 1750 us

- Direct mounts has the highest spread of the access methods

- Up until now we took a look at Oms RTT, meaning that we connected

the backend to the mount/userfault handler directly 4



Initialization

- Mount initialization time
- There are two diffent ways to check for whether a device is ready:
Polling or subscribing to the udev events

- Initialization time for udev is higher on average than the polling
method

- Spread is similar for both methods
- Pre-emptive pulls
- When looking at pre-emptive pulls as RTT increases, the role of
workers becomes apparent
- The higher the worker count is, the more data can be pulled
- While for 4096 workers, almost 40 MB can be pulled pre-emptively at

7ms, this drops to 20 MB for 2048 workers, 5 MB for 512 workers and
continues to drop

- Even for a RTT of Oms, more workers mean more pre-emptively pulled
data in general

50



Chunking

- Server vs. client-side chunking

- Chunking can be done on either client- or server-side for both direct
and managed mount

- Itis clear that unless the RTT is 0, managed mounts yield significantly
higher throughput than direct mounts of both server- and client side
chunking

- When looking at the direct mounts, server-side chunking is very fast
for Oms RTT at almost 500 MB/s throughput, but drops very quickly to
75MB/s at 1ms, 40MB/s at 2ms, and continues to drop down to just
over 5MB/s at 20ms RTT

- For client-side chunking, the result is lower at just 30MB/s even at a
0ms RTT, and then continues to drop steadily it reaches 4.5MB/s at
20ms RTT

- Looking at managed mounts the scenario is very different

- Throughput also declines as RTT increases, but less drastically

- Server-side chunking has much higher throughputs, at 450MB/s at

0ms RTT vs. 230MB/s at 0ms for the client-side chunking !



RPC frameworks

- Throughput for RPC frameworks

- Looking at the performance for dudirekta, gRPC and fRPC for
managed and direct mounts, quite drastic throughput differences can
be seen as the RTT increases

- While for 0 RTT, the direct mounts provide the best throughput in line
with the measurements for the different access technologies, the
throughput drops drastically as RTT increases compared to managed
mounts

- In general, dudirekta has much lower throughput than both gRPC and
fRPC

- When looking at direct mounts specifically, the sharp difference
between dudirekta and gRPC/RPC is visible

- While at 0 RTT, fRPC is at 390MB/s and gRPC is at 500MB/s, dudirekta
reaches just 50MB/s

- At 2ms, throughput for all RPC frameworks drop drastically as the RTT
increases, with fRPC and gRPC both reaching 40MB/s, and Dudirekta

dropping to just 20MB/s 52



- Latency for backends
- Average first chunk latency for memory, file, directory, Redis and
Cassandra backends at 0Oms RTT are all similar and within ps range
- The latency for accessing Redis is the lowest at 2.5us
- Looking at the latency distribution, Redis once again is visible as
having both the smallest amount of spread and the lowest amount of
latency
- Memory and S3 stick out for having a low amount of outlyers when it
comes to first chunk latency, while the directory backend is notable
for it's significant spread
- Throughput for backends
- When looking at throughput, the backends have significantly more
different characteristics compared to latency
- File and memory consistently have high throughput
- For direct mounts, file throughput is higher than memory througput
at 2081 MB/s vs 1630MB/s on average respectively

. 53
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Discussion




- By using userfaultfd we are able to map almost any object into
memory

- This approach is very clean and has comparatively little overhead,
but also has significant architecture-related problems that limit its
uses

- The first big problem is only being able to catch page faults - that
means we can only ever respond the first time a chunk of memory
gets accessed, all future requests will return the memory directly
from RAM on the destination host

- This prevents us from using this approach for remote resources that
update over time

- Also prevents us from using it for things that might have concurrent
writers/shared resources, since there would be no way of updating
the conflicting section

- Essentially makes this system only usable for a read-only “mount” of 54



File-Based Synchronization

- Similarly to userfaultfd, this system also has limitations

- While userfaultfd was only able to catch reads, this system is only
able to catch writes to the file

- Only a viable solution for pre-copy migration

- Essentially this system is write-only, and it is very inefficient to add
hosts to the network later on

- As a result, if there are many possible destinations to migrate state
too, a star-based architecture with a central forwarding hub can be
used

- The static topology of this approach can be used to only ever require
hashing on one of the destinations and the source instead of all of
them

- This way, we only need to push the changes to one component (the
hub), instead of having to push them to each destination on their

own 55]



FUSE

- FUSE can provide both a solution for pre- and post-copy migration

- FUSE also has downsides

- It operates in user space, which means that it needs to do context
switching, esp. compared to a file system in kernel space

- Some advanced file system features aren’t available for a FUSE

- The overhead of FUSE (and implementing a completely custom file
system) for synchronizing memory is significant

- The optimal solution would be to not expose a full file system to
track changes, but rather a single file

- As a result of this, the significant implementation overhead of such a
file system led to it not being chosen, since NBD is available as an

alternative
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Direct Mounts

- Have a high spread/are unpredictable when from a first chunk
latency perspective at 0ms RTT, but is more predictable when it
comes to throughput

- First chunk latency grows linearly like userfaultfd as RTT increases,
because there are no pre-emptive pulls

- Has the highest throughput at Oms RTT, even higher than managed
mounts, because the duplicate I/0 operations for the background
pull are not necessary

- Throughput doesn't drop as rapidly as userfaultfd, but still
significantly because there is no background pulls, all data needs to
be accessed one by one

- Write speed is subpar because writes need to be delivered directly
remotely, as there are no background pushes compared to managed
mounts

- Is a good solution if the internal overhead of managed mounts is =



Managed Mounts

- Have an internal overhead due to duplicate /0 operations for
background pull, resulting in worse throughput for low (esp. 0ms)
RTT scenarios and higher inital latencies

- As soon as the RTT reaches levels more typical for a WAN
deployment, this becomes

- Tuning the background workers can substantially increase the
throughput values, since data can be accessed in parallel

- Pull priority function can allow for even more optimized pulls

- Pre-emptive pulls can significantly reduce initial chunk latency, since
multiple MB can be pulled before the device is open

- Higher worker counts can significanlty increase the amount of
chunks that can be pre-emptively pulled

- Generally speaking, polling is almost always the better choice for an
initialization algorithm in order to reduce the overall Open() time
and thus reduce the overhead of mounting a remote ressource 58



Chunking

- In general, server-side chunking should always be preferred due to
the much better throughput

- For direct mounts, due to the linear access, the throughput is low for
both server- and client-side chunking due to linear access as RTT
increases, but server-side chunking is much more performant in this
circumstance for low RTTs

- For managed mounts, client-side chunking can half the throughput
of @ mount compared to server-side chunking, mostly because if the
chunks are smaller than the NBD block size, it decreases the amount
of chunks that can be pulled relative if the worker count stays the
same, while server-side chunking doesn’t require and extra worker
on the client for each extra chunk that needs to be pulled, making it
possible for the background pull system to pull more, increasing the

throughput
59



RPC Frameworks

- Dudirekta
- Consistently has lower throughput than the alternaties
- Performs better for managed mounts than direct mounts thanks to
support for concurrent RPCs
- Less sensistive to RTT compared to gRPC and fRPC for managed
mounts
- Even with managed mounts, much worse throughput compared to
both due to no connection pooling support
- Remains a good option for prototyping due to lower development
overhead and transport layer independence
- gRPC
- Considerably faster than Dudirekta for managed and direct mounts
- Has support for connection pooling, giving it a significant
performance benefit over Dudirekta for managed mounts
- Very good performance for direct mounts with Oms RTT
- Is an industry standard, and has good tooling and known scalability

_ 60
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- Redis
- Has the smallest amount of spread and lowest amount of initial
chunk latency at Oms RTT
- Direct mounts have a lower throughput compared to managed
mounts, showing good support for concurrent chunk access
- Has the highest throughput for direct mounts by a significant margin
due to its optimized protocol and fast key lookups
- Is also the fastest network-capable backend for managed mounts,
once again due to the good support for concurrent access
- Good choice for ephermeral data like caches, where speed or the
need for the direct mount APl is important
- Cassandra
- Has highest throughput in 0Oms RTT deployments for direct mounts,
showing very good concurrent access performance
- Falls short when it comes to usage in direct mounts, where the
performance is worse than any other backend, showing a high read

6
latency overhead for looking up individual chunks !



- Limitations of NBD and ublk as an alternative

- NBD is the underlying technology for both direct and managed
mounts

- NBD is a battle-tested solution for this with fairly good performance

- In the future a more lean implemenation called ublk could also be
used

- ublk uses io_uring, which means that it could potentially allow for
much faster concurrent access

- Itis similar to NBD; it also uses a user space server to provide the
block device backend, and a kernel ublk driver that creates
/dev/ublkbx devices

- Unlike as it is the case for the NBD kernel module, which uses a
rather slow UNIX or TCP socket to communicate, ublk is able to use
jo_uring pass-through commands

- The io_uring architecture promises lower latency and better
throughput

- Because it is however still experimental and docs are lacking, NBD 62



Language Limitations

- Issues with the r3map implementation

- While the managed mounts API mostly works, there are some issues
with it being implemented in Go

- This is mostly due to deadlocking issues; if the GC tries to release
memory, it has to stop the world

- If the mmap APl is used, it is possible that the GC tries to manage the
underlying slice, or tries to release memory as data is being copied
from the mount

- Because the NBD server that provides the byte slice is also running in
the same process that is consuming the byte slice, this causes a
deadlock as the server that provides the backend for the mount is
also frozen
(https://github.com/pojntfx/r3map/blob/main/pkg/mount/slice_managed.gc
L93)

- A workaround for this is to lock the mmaped region into memory, but
this will also cause all chunks to be fetched, which leads to a high

Open() latency 63



Remote Swap With ram-dl

- ram-dl is a fun experiment

- Is a tech demo for r3map

- Uses the fRPC backend to expand local system memory

- Allows mounting a remote system’s RAM locally

- Can be used to inspect a remote system’s memory contents

- Is based on the direct mount API

- Uses mkswap, swapon and swapoff (code snippet from
https://github.com/pojntfx/ram-dl/blob/main/cmd/ram-
dl/main.go#1170-1190)

- Enables paging out to the block device provided by the direct mount
API

- ram-ul “uploads” RAM by exposing a memory, file or
directory-backed file over fRPC

- ram-dl then does all of the above

- Not really intended for real-world usecases, but does show that this 64



Mapping Tape Into Memory With tapisk

- Overview

- tapisk is an interesting usecase because of how close it is to STFS,
which provided the inspiration for the FUSE-based approach

- Very high read/write backend latency (multiple seconds, up to 90s,
due to seeking)

- Linear access, no random reads

- Can benefit a lot from asynchronous writes provided by managed
mounts

- Fast storage acts as a caching layer

- Backend is linear, so only one read/write possible at a time

- With local backend, writes are de-duplicated automatically and both
can be asynchronous/concurrent

- Writes go to fast (“local”) backend first, syncer then handles in both
directions

- Only one concurrent reader/writer makes sense

- Syncing intervals to/from can maybe be minutes or more to make it

more efficient (since long, connected write intervals prevent having to 6



Improving File System Synchronization Solutions

- Existing Solutions

- Another potential usecase is using r3map to create a mountable
remote filesystem with unique properties

- Currently there are two choices on how these can be implemented

- Google Drive, Nextcloud etc. listen to file changes on a folder and
synchronize files when they change, similarly to the file
synchronization approach to memory synchronization

- The big drawback is that everything needs to be stored locally

- If a lot of data is stored (e.g. terabytes), the locally available files
would need to be manually selected

- There is no way to dynamically download files this way as they are
required

- Itis however very efficient, since the filesystem is completely
transparent to the user (writes are being synced back asynchronously)

- It also supports an offline usecase easily

- The other option is to use a FUSE, e.g. s3-fuse

- This means that files can be fetched on demand 66



Universal Database, Media and Asset Streaming

- Streaming access to remote databases

- Another usecase is accessing a remote database locally

- While using a database backend is one option of storing chunks, an
actual database can also be stored in a mount as well

- Particularly interesting for in-memory or on-disk databases like
SQlite

- Instead of having to download the entire SQLite database before
using it, it can simply be mounted, and accessed as it is being used

- This allows very efficient network access, as only very rarely the entire
database is needed

- Since reads are cached with the managed mount API, only the first
read should potentially have a performance impact

- Similarly so writes to the database will be more or less the same
throughput as to the local disk, since changes are written back
asynchronously

- If the full database should eventually be accessible locally, the

background pullers can be used o



Universal App State Synchronization and Migration

- Modelling state

- Synchronization of app state is hard

- Even for hand-off scenarios a custom protocol is built most of the
times

- Itis possible to use a database sometimes (e.g. Firebase) to
synchronize things

- But that can't sync all data structures and requires using specific APIs
to sync things

- What if you could mount and/or migrate any ressource?

- Usually these structures are marshalled, sent over a network, received
on a second system, unmarshalled, and then are done being synced

- Requires a complex sync protocol, and when to sync, when to pull etc.
is inefficient and usually happens over a third party (e.g. a database)

- Data structures can almost always be represented by am []byte

- If the data structures are allocated from on a []byte from the block
device, we can use the managed mount/direct mount/migration APIs

to send/receive them or mount them 68



Summary




- There are multiple ways and configurations for implementing a
solution that allows for universally accessing, synchronizing and
migrating memory regions efficiently

- Each configuration and API show different strengths and weaknesses
in benchmarks

- Access methods

- userfaultfd is an interesting APl and very idiomatic to both Linux as a
first-party solution, and Go due to its fairly low implementation
overhead, but does fall short in throughput, especially when used in
WAN networks, where other options provide better performance
- The delta synchronization method for mmaped files does provide a
simple way of memory synchronization for specific scenarios, but
does have a very significant I/0O and compute overhead making it
unsuitable for most applications
- FUSE provides an extensive APl to implement a complete file system
in user space, but has significant implementation overhead making it 69
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Conclusion




Conclusion

- The proposed solution consisting of the direct mount, managed
mount and migration APIs implemented in the r3map library present
a truly universal way of accessing, synchronizing and migrating
memory regions between hosts

- Itis not only a concept, but a ready-to-use library with good enough

throughput and latency for it to be used for real-world scenarios
today

- Real-world use cases of the solution show this readiness today
- ram-dl shows how easy the proposed API is, making it possible to
share and mount a remote system’s memory in under 300 source
lines of code
- tapisk shows that the API can be used to make almost any resource,
including a tape drive with linear reads and writes, accessible with
the proposed system

- Aside from these implemented use cases, the underlying technology

. . 70
makes many other configurations previously thought of as
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