HOCHSCHULE
DER MEDIEN

Bachelor’s Thesis

Efficient Synchronization of Linux
Memory Regions over a Network

A Comparative Study and Implementation

Author: Felicitas Pojtinger
University: Hochschule der Medien Stuttgart

Course of Study: Media Informatics :m; r3 m a p

Date: 2023-08-03
Academic Degree: Bachelor of Science

Primary Supervisor: Prof. Dr. Martin Goik @
Secondary Supervisor: M.Sc. Philip Betzler LoophOIe Lq bs

Introduction

Today’s Technological Landscape

What if there were a better way?

Thesis Structure

SRS

Introduction to Base Technologies

Overview of Access Methods

Implementing Select Access Methods
Analyzing Performance Benchmarks
Discussion of Benchmarks and Technologies
Conclusion and Future Outlook

Presentation Structure

Introduction

Methods

Optimizations

Results and Discussion
Implemented Use Cases
Future Use Cases
Conclusion

NS ko=

Access Methods

Userfaults

Principle of Locality

Register: 0.2ns
l-40ns

10-40ps

Figure 1: Latencies for different memory technologies showing, from lowest to highest latency,

registers, cache, main memory, CXL memory, network-attached memory, SSDs and HDDs [12]

Memory Hierarchy

Page Faults

An Overview of Userfaults

I // Creating the “userfaultfd API
2 uffd, _, errno := syscall.Syscall(constants.NR_userfaultfd, 0, 0, 0)

| uffdioAPI := constants.NewUffdioAPI (
5) constants.UFFD_API,

6 0,

7T)

8 //

I0 // Registering a region
||l uffdioRegister := constants.NewUffdioRegister(
12 constants.CULong(start),
3 constants.CULong(1),
! constants.UFFDIO_REGISTER_MODE_MISSING,

6 //

syscall.Syscall(

13 syscall.SYS_IOCTL,

19 uffd,

20 constants.UFFDIO_REGISTER,

21 uintptr (unsafe.Pointer (4uffdioRegister))

1

14

15)
1

I

Implementing Userfaults

| func (a abcReader) ReadAt(p []lbyte, off int64) (n int, err error) {
2 n = copy(p, bytes.Repeat([lbyte{'A' + byte(off%20)}, len(p)))

1 return n, nil

f, err := os.0OpenFile(*file, os.0_RDONLY, os.ModePerm)
b, uffd, start, err := mapper.Register(int(s.Size()))
mapper .Handle (uffd, start, f)

b

L //
2 f, err := mc.GetObject(ctx, *s3BucketName, *s30bjectName, minio.GetObjectOptions{})

3 b, uffd, start, err := mapper.Register(int(s.Size()))
! mapper.Handle(uffd, start, f)

Implementing Userfaults

File-Based Synchronization

mmap

Client Reqy est for Server
Yncing Fije ¢
T Segmentation
r‘—ch/eﬂ“\"/s‘o/ IFingerprinting
Searching
Comparing
Matcp;
n
Generate Literal Bytes & Uteragl ;3:<ens
es
ACK New File f’

Figure 2: Design flow chart of WebRsyne, showing the messages sent between and operations

done for server and client in a single synchronization cycle[25]

Delta Synchronization

How can we use mmap and Delta Synchronization?

Caching Restrictions

Detecting File Changes

Speeding Up Hashing

Protocol & Multiplexer Hub

20

// Receiving remote hashes
remoteHashes := [Jstring{}
utils.DecodeJSONFixedLength(conn, &remoteHashes)
1/

// Calculating the hashes

localHashes, cutoff, err := GetHashesForBlocks(parallel, path, blocksize)

// Comparing the hashes

blocksToSend := [lint64{}
for i, localHash := range localHashes {
//

if localHash != remoteHashes([i] {
blocksToSend = append(blocksToSend, j)

continue
¥

// Sending the non-matching hashes
utils.EncodeJSONFixedLength(conn, blocksToSend)

10

// The lock and semaphore
var wg sync.WaitGroup
wg.Add (int(blocks))

lock := semaphore.NewWeighted(parallel)
1/
// Concurrent hash calculation

for i := int64(0); i < blocks; i++ {
j =1

go calculateHash(j)

}
wg.Wait ()

// Local hash calculation

localHashes, _, err := GetHashesForBlocks(parallel, path, blocksize)

// Sending the hashes to the remote

// Receiving the remote hashes and the truncation request
blocksToFetch := [Jint64{}
utils.DecodeJSONFixedLength(conn, &blocksToFetch)

Y AR

cutoff := int64(0)

utils.DecodeJSONFixedLength(conn, &cutoff)

"src-control":
// Decoding the file name
file = "*
utils.DecodeJSONFixedLength(conn, &file)
//

syncerSrcControlConns[file] = conn

syncerSrcControlConnsBroadcaster.Broadcast (file)
//
“dst-control":
var wg sync.WaitGroup
wg.Add (1)

go func() {
// Subscription to send all future file names
1 := syncerSrcControlConnsBroadcaster.Listener (0)

for file := range 1.Ch() {
utils.EncodeJSONFixedLength(conn, file)
//
}
30

// Sending the previously known file names

for file := range syncerSrcControlConns {
utils.EncodeJSDNFixedLength(conn, file)
//

}

wg.Wait()

Delta Synchronization

Limitations

FUSE

Is -| /tmp/fuse

ibc []) (lbc)

remenereene -,

Userspace “eeeeeeeeeeeeeeees A =il
Kernel ! q | FUSE I
e | NFS |

I Ext3 |

Figure 3: Structural diagram of FUSE, showing the user space components handled by the C
library and the FUSE library as well as the kernel components such as the Linux VFS and the

FUSE kernel module[27]

What is FUSE?

static int example_getattr(const char *path, struct stat *stbuf,
2 struct fuse_file_info *fi);

| static int example_readdir(const char #*path, void *buf, fuse_fill_dir_t filler,
2 off_t offset, struct fuse_file_info *fi,
enum fuse_readdir_flags flags);

1 static int example_open(const char *path, struct fuse_file_info *fi);

static int example_read(const char #*path, char *buf, size_t size, off_t offset, struct
fuse_file_info *fi);

FUSE Syscalls

FUSE for Memory Synchronization

Limitations

NBD

Server | I Export's Backend

T
|

Handshake H
T T
! Establish &
| |
L Greeting message (server flags) |
™~ 1
Client flags J

A4

Options, export size and other metadata

|
i
|
| NEGOTIATION_ID_OPTION_INFO or NEGOTIATION_ID_OPTION_GO
r
|
1
|

Transmission

Toop)| [until TRANSMISSION TYPE REQUEST DISC]

|
I Command (i.e. read, write)
r

A4

et it = I et S

T
|
|
I
I
I
|
|
|
I
I
I
I
I
|
|
|
I
I
I
I
+
|
|
I
I
I
|
|

ait_| 1 TRANSMISSION TYPE REQUEST READ]
|
I Forward read request
|
: s Retrieve relevant chunk !
| | I
1 Send chunk 1 1
[l 1 I
' i i
| I I
| | I
| | write chunk to backend |
| "
L h i
| | I
| | I
1 Reply (error, success, data) | |
1 I
' ; '
| | L
| | I
! TRANSMISSION_TYPE_REQUEST_DISC < :
| | I
| | Sync » |
| I i
L Close connection ! :
| | I
| 1 I
1 1 1

Figure 4: Sequence diagram of the baseline NBD protocol (simplified), showing the

handshake, transmission and disconnect phases

NBD Protocol

NBD for Memory Synchronization

gggggg

|

)

type Backend interface {
ReadAt(p [lbyte, off int64) (n int, err error)
WriteAt(p [lbyte, off int64) (n int, err error)
Size() (int64, error)
Sync() error

func Handle(conn net.Conn, exports [JExport, options *Options) error

Server

Client

func Connect(conn net.Conn, device *os.File, options *0Options) error

10

16

20

// Connecting to “udev"
udevConn.Connect (netlink.UdevEvent)

// Subscribing to events for the device name
udevConn.Monitor (udevReadyCh, udevErrCh, &netlink.RuleDefinitions{
Rules: [Jnetlink.RuleDefinition{
{
Env: map[stringlstring{
"DEVNAME": device.Name(),
¥,
}7
},
b

// Waiting for the device to become available
go func() {

(WO
<-udevReadyCh

options.OnConnected ()

0O

Combining Server and Client into Mounts

Managed Mounts

RTT, LAN and WAN

Why not just NBD?

Chunking

Background Pull and Push

| type ReadWriterAt interface {
2 ReadAt(p [lbyte, off int64) (n int, err error)
3 WriteAt(p [lbyte, off int64) (n int, err error)

Pipeline Stages

Pipeline Components

e ArbitraryReadWriterAt
e ChunkedReadWriterAt
e SyncedReadWriterAt: Background Pull and Push

Concurrent Initialization

| type ManagedMountHooks struct {
2 OnBeforeSync func() error
3 OnBeforeClose func() error
] OnChunkIsLocal func(off int64) error

Device Lifecycle

Live Migration

Pre-Copy Migration

Post-Copy Migration

Workload Analysis

Why a new API?

Seeder

| Application I
I

1
| |

loop J [until application shuts down]
|

Establish connection

|

|

|

|

|

! AN
| Start tracking writes
|

|

|

|

|

|

|

|

|
|
|
|
J
|
|
1
|
|
|
|

i

Track()

A

I Start pulling chunks in background [ﬁ
I

Finalize()

|
|
|
|
|
[P
b
|
|

|
|
|
| Suspend |
< |
| . |
] | Flush the mount (sync/msync) B| |
| - |
| |
| Send list of changed chunks _|
[1
| H
| | Mark received chunks as remote H

| T
| |

: I Queue received chunks to be pulled [ﬁ
| |
! Resume !
| |
[Close connection |
~ |
|
|
|

|
|
|
|
|
|
|
|
|
|
|
€
<
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|

|
|
|
|
|
| | Re-use mount & become seeder 5
|
1
|
|
|

T
1
|
|
|

M Ig rat|0n PrOtOCO| Figure 6: Sequence diagram of the migration protocol (simplified), showing the two protocol

phases between the application that is being migrated, the seeder and the leecher components

I

type SeederRemote struct {

ReadAt func(context
error)

Size func(context

Track func(context

Sync func(context

Close func(context

context

context

context
context

.Context,

.Context)
context.
.Context)
.Context)

Context)

length int, off int64) (r ReadAtResponse, err

(int64, error)
error

([lint64, error)
error

Seeder

T o= 0O

0000~ CT

// Suspends the remote application, flushes the mount and returns offsets that have been
written too since “Track()’
dirtyOffsets, err := l.remote.Sync(l.ctx)

// Marks the chunks as remote, causing subsequent reads to pull them again
1l.syncedReadWriter .MarkAsRemote (dirtyOffsets)

// Schedules the chunks to be pulled in the background immediately
l.puller.Finalize(dirtyOffsets)

// Unlocks the local resource for reading
1.lockableReadWriterAt.Unlock()

Leecher

Optimizations

Pluggable Encryption, Authentication and Transport

Concurrent Backends

Remote Stores as Backends

| func (b *RedisBackend) ReadAt(p [lbyte, off int64) (n int, err error) {
2 // Retrieve a key corresponding to the chunk from Redis

3 val, err := b.client.Get(b.ctx, strconv.FormatInt(off, 10)).Bytes()
i // If a key does not exist, treat it as an empty chunk

5 if err == redis.Nil {

6 return len(p), nil

7 }

8 //

9 3}

10

Il func (b *RedisBackend) WriteAt(p [Jbyte, off int64) (n int, err error) {
12 // Store an offset as a key-value pair in Redis

13 b.client.Set(b.ctx, strconv.FormatInt(off, 10), p, 0)

14 //

15 2}

Redis

10
11
12

13

func (b *S3Backend) ReadAt(p [lbyte, off int64) (n int, err error) {
// Receiving a chunk using Minio's S3 client
obj, err := b.client.GetObject(b.bucket, b.prefix+"-"+strconv.FormatInt(off, 10),
minio.GetObjectOptions{})

if err != nil {
// If an object is not found, it is treated as an empty chunk

if err.Error() == errNoSuchKey.Error() {
return len(p), nil

}
//

}

S3

ScyllaDB

func (b *CassandraBackend) ReadAt(p []lbyte, off int64) (n int, err error) {
// Executing a select query for a specific chunk, then scanning it into a byte slice
var val []byte
if err := b.session.Query(select data from “+b.table+ where key = 7 limit 17, b.
prefix+"-"+strconv.FormatInt (off, 10)).Scan(&val); err != nil {
if err == gocql.ErrNotFound {
return len(p), nil

}

return 0, err
}
//
}

func (b *CassandraBackend) WriteAt(p [lbyte, off int64) (n int, err error) {
// Upserting a row with a chunk's new content
b.session.Query(insert into “+b.table+ (key, data) values (7, 7)°, b.prefix+"-"+
strconv.FormatInt (off, 10), p).Exec()
//

Dudirekta

gRPC

fRPC

Results and Discussion

Property

Value

Device Model
OS
Kernel

CPU

Memory

Dell XPS 9320

Fedora release 38 (Thirty Eight) x86_ 64
6.3.11-200.fc38.x86 64

12th Gen Intel i7-1280P (20) @ 4.700GHz
31687TMiB LPDDR5, 6400 MT/s

Testing Environment

Access Methods

Average First Chunk Latency for Different Technologies (Oms RTT)

Memory |767 ns

Disk 014 ns

userfaultfd

Direct Mounts

Managed Mounts

o

20 40 60 80 100 120 140 160
Average First Chunk Latency (us)

Figure 8: Average first chunk latency for different direct memory access, disk, userfaultfd,
direct mounts and managed mounts (Oms RTT)

Latency

Distribution of Latencies for Different Technologies (Oms RTT), exchuding Disk and Memory

userfaultfd
Direct Mounts -
Managed Mounts LTI DI . .

0 250 500 750 1000 1250 1500 1750
Latency (us)

Figure 9: Box plot for the distribution of first chunk latency for userfaultfd, direct mounts
and managed mounts (Oms RTT)

Latency

Average First Chunk Latency by RTT and Technology

— wserfaultfd
—— Direct Mounts
—— Managed Mounts

Average First Chunk Latency (ms)
5 & 3 & ®8 uw 8

w
"

RTT (ms)

Figure 10: Average first chunk latency for userfaultfd, direct mounts and managed mounts by

RTT

Latency

Average First Chunk Latency for Managed Mounts vs RTT for Different Worker Counts

—— 0 Workers

30 1 Workers

— 16 Workers
512 Workers

25 A

20 A

15 A

10 1

First Chunk Latency for Managed Mounts (ms)

T T T

0 5 10 15 20 25 30
RTT (ms)

Figure 11: Average first chunk latency for managed workers with 0-512 workers by RTT

Latency

Average Throughput for Different Technologies (Oms RTT)

userfaultfd 4

Managed Mounts |

o 2500 5000 7500 10000 12500 15000 17500 20000
Average Throughput (MB/s)}

Figure 12: Average throughput for memory, disk, userfaultfd, direct mounts and managed
mounts (Oms RTT)

Read Throughput

Average Throughput for Different Technologies (Oms RTT), excluding Disk and Memory

2000 2500

o 00 1000

1500
Average Throughput (MB/s)

Figure 13: Average throughput for userfaultfd, direct mounts and managed mounts (Oms
RTT)

Read Throughput

Average Throughput by RTT and Technology

— userfaultfd
~— Direct Mounts
3000 A === Managed Mounts
2500 4
<
< 2000+
=3
=
[=J
E 1500
T
:
2 1000 1
500 4
04
0 5 10 15 20 25 30 35 40
RTT {ms)

Figure 15: Average throughput for userfaultfd, direct mounts and managed mounts by RTT

Read Throughput

Average Throughput (MB/s)
g

Average Throughput vs RTT for Different Worker Counts

]
8

16384 Workers
8192 Workers
4092 Workers
2048 Workers
0 Workers

512 Workers
16 Workers

1 Workers

) 5 10 15 20 25 30
RTT (ms)

Figure 16: Average throughput for managed mounts with 0-16384 workers by RTT

Read Throughput

5.2.3 Write Throughput

Average Write Throughput by RTT

200 A
a
o .
H 150
o
2
2 —— Direct Mounts
§' —— Managed Mounts
,‘E 100 4
£
=

50 -

0
oms 1ms 2ms 3ms 4ms 5ms 6ms
RTT (ms)

Figure 17: Average write throughput for direct and managed mounts by RTT

Write Throughput

Discussing Access Methods

Initialization

Direct Mount Initialization Time Distribution (KDE)

Polling (ms)

udev (ms)
0.10 1
0.08 1

oy

§ 0.06
0.04
0.02

0.00 T T T T T T

5 10 15 20 25 30

Initialization Time (ms)

Figure 18: Kernel density estimation for the distribution of direct mount initialization time
with polling vs. udev

Initialization

Average Preemptive Pulls for Managed Mounts vs RTT for Different Worker Counts

— 1 Workers
64 Workers
80 —— 512 Workers
2048 Workers
—— 4096 Workers

60 1

Preemptive Pulls for Managed Mounts (MB)

0 2 4 6 8 10 12 14 16 18 20
RTT (ms)

Figure 19: Amount of pre-emptively pulled data for managed mounts with 0-4096 workers by
RTT

Initialization

Chunking

Average Read Throughput by RTT, Chunking Type and Mount Type

—— Server-Side Chunking (Direct Mount)
=== Server-Side Chunking (Managed Mount)
—— Client-Side Chunking (Direct Mount)
=== Client-Side Chunking (Managed Mount)

300

200

Average Throughput (MB/s)

0.0 25 5.0 75 10.0 125 15.0 17.5 20.0
RTT (ms)

Figure 20: Average read throughput for serv

side and client-side chunking, direct mounts

and managed mounts by RTT

Read Throughput

age Aoad by RTT and Chunking Type (Direct Mount)

— SarverSide Chunbing
= Chent-Side Chunking

H

%

Awverage Throughpet (MBIs)

1] 25 50 75 100 ns 150 s 00
T Ims)

Figure 21: Average read throughput for server-side and client-side chunking with direct
mounts by RTT

Read Throughput

=|o === ServerSide Chanking
:A‘ === Chest-Side Chunking
" 'I
l' !
%00 2%
¢ '
] \
S \
! M
p— \
&S0 24 !
\
\
‘l
i
! \
£ wo Y
;)
\
\ e
E \ s N
0 \ ot
5 st .
© e % o
g Nt SN e -~
; RS IR L e
N, >
00 o
28 - ., ™t
'I' s iV ™ -
. N -+ - . -
g mmmmmsssm T el
230 K G P
~~~~~~
l’ _______
‘‘‘‘‘
“““““““
200 TeE Tzt
oo 28 0 s 100 123 1.0 178 00
ROT {ms)

Figure 22: Average read throughput for server-side and client-side chunking with managed

mounts by RTT

Read Throughput



RPC Frameworks



Throughput

Average Throughput by RTT for All RPC Frameworks

500 4 —— dudirekta (Direct Mount)
« dudirekta (Managed Mount)
—— grpc (Direct Mount)
«+++ grpc (Managed Mount)
—— frpc (Direct Mount)
1 ««++ frpc (Managed Mount)
Z 300 - -
5 S B -
4 S Do . IH
& A
3
e
=
-
&
@ 200 1
g
z
100
0
T T T u T T T
0 5 10 15 20 25 30 35 40
RTT (ms)

Figure 23: Average throughput by RTT for Dudirekta, gRPC and fRPC frameworks for

direct and managed mounts




Throughput

Average Throughput by RTT for Direct Mount RPC Frameworks

500

300 1

200

Average Throughput (MB/s)

100

= dudirekta (Direct Mount)
—— grpc (Direct Mount)
= frpc (Direct Mount)

RTT (ms)

Figure 24: Average throughput by RTT for Dudirekta, gRPC and fRPC frameworks for

direct mounts




Throughput

Average Throughput by RTT for Managed Mount RPC Frameworks

+ dudirekta (Managed Mount)
-+ grpc (Managed Mount)
«+++ frpc (Managed Mount)

2 3 3
@ 300 1 2 :
z . ’ ]
- . . .
E] g .
Q . . L
= . .
S $ seeemsecanaadd, %
g X
£
&
& 200
2
3

100

0 10 15 20 25 30 35 40
RTT (ms)

Figure 25: Average throughput by RTT for Dudirekta,

managed mounts

gRPC and fRPC frameworks for




Discussing RPC Frameworks



Backends



Average First Chunk Latency for Different Backends (Oms RTT)

1000

800

Latency (us)

¥ ) & o

9 )
& <
Q

Backend

Figure 26: Average first chunk latency for memory, file, directory, Redis, S3 and ScylllaDB
backends (Oms RTT)

Latency



First Chunk Latency Distribution for Different Backends (Oms RTT)

1500

1250

—
o
o
o

750

Latency (us)

500

250

& & & 8 @ Sy
Q‘G & Q’ ‘,‘;b(\

< &
Figure 27: Box plot of first chunk latency distribution for memory, file, directory, Redis, S3
and ScylllaDB (Oms RTT)

Latency



Average Throughput for Different Backends (Oms RTT)

2372
File

Memory

Cassandra

Backend

Redis

Directory

W Direct Mount
I Managed Mount

0 500 1000 1500

2000
Average Throughput (MB/s)

Figure 28: Average throughput for memory, file, directory, Redis, S3 and ScylllaDB backends
for direct and managed mounts (Oms RTT)

Throughput



Average Throughput for Different Backends (Direct Mount, Oms RTT)

Cassandra

Backend

o 20 40

60 80
Average Throughput (MB/s)

Figure 29: Average throughput for Redis, S3 and ScylllaDB backends for direct mounts (Oms
RTT)

Throughput



Throughput Distribution for Different Backends (Direct Mount, Oms RTT)

107 Redis
s3
Cassandra
108
5
= 10°
b
o
2
g 10
o
10°
104
0 20 40 60 80 100 120 140 160
Throughput (MB/s)

Figure 30: Kernel density estimation (with logarithmic Y axis) for the throughput
distribution for Redis, S3 and ScylllaDB for direct mounts (Oms RTT)

Throughput



Average Throughput for Different Backends (Managed Mount, Oms RTT)

Backend

o 100

200 300 400 500
Average Throughput (MB/s)

Figure 31: Average throughput for Redis, S3 and ScylllaDB backends for managed mounts
(Oms RTT)

Throughput



Throughput Distribution for Different Backends (Managed Mount, Oms RTT)

Cassardra ‘.

800 1000

400 600
Throughput (MB/s)

Figure 32: Box plot for the throughput distribution for Redis, S3 and ScylllaDB for managed
mounts (Oms RTT)

Throughput



Average Throughput vs. RTT for Different Backends (Direct Mounts)

1600 4 Service
—  Memory

1400 - — File
@ —— Directory
g —— Redis
s 1200 =
s ~—— Cassandra
3 1000
z
-
o
g
£ 800
S
S
S 6001
(<%
£
S 400 -
e
&

200

0+ \_
oms 2ms ams 6ms 8ms 10ms 12ms 14ms 22ms 28ms Ums 40ms

RIT

Figure 33: Average throughput for memory, file, directory, Redis, S3 and ScylllaDB backends

for direct mounts by RTT

Throughput



Average Throughput vs. RTT for Different Backends (Direct Mounts) - Excluded Services

140
Service
— Redis
120 — s
g -~ Cassandra
Z 100
2
c
§ o/
S 6o
e
2
‘g a0
F 2.
o-
oms 2ms ams 6ms 8ms 10ms 12ms 14ms 22ms 28ms 3ams 40ms

Figure 34: Average throughput for Redis, S3 and ScylllaDB backends for direct mounts by
RI'T

Throughput



Average Throughput vs. RTT for Different Backends (Managed Mounts)

2500 4 Saapgect ™Y Service
hiel TN ‘.. <<+ Memory
N ---- Fle
2 ---- Directory
£ 2000 : -« Redis
g '.‘:‘ - 83
§ ‘:’ ---+ Cassandra
1§1soo \
5 1000
a _______ T —— N““-.__“
BEPC "---..___.,:-...(_-:_‘: ......... Rt TS
g 500 R
B ||| o e o B e AR R SR RRMR SRR SUYL O NS
----------------------------------------------------- 3 ;;J:E}JJ}-!-’.WF.’.’E
P L SR etILLEELELERLLLIS A LE
oms 2ms ams 6ms Bms 10ms 12ms 14ms 22ms 28ms 34ms 40ms

Figure 35: Average throughput for memory, file, directory, Redis, S3 and ScylllaDB backends

for managed mounts by RTT

Throughput



Average Throughput vs. RTT for Different Backends (Managed Mounts) - Excluded Services

700 A .
..... qo e, Service
600 - . Soans o edhEs --=e S3
= ) ---- Cassandra
= P Wi
¥ 500 A - U
c . A
3 Bl P
e 1 e T ey
= B, ML .
v 400494 e >
@ o
o g T4 .
3 s
c s .
o .
= 300 A Moy sy
— -y Snwa
s o T e S S
Seol e, e
B2004 0 e
o
2
e
F 100 1
gli = OOTSESReRES OSSR e
oms 2ms 4ms 6ms 8ms 10ms 12ms 14ms 22ms 28ms 34ms 40ms

Figure 36: Average throughput for Redis, S3 and ScylllaDB backends for managed mounts by
RIT

Throughput



Average Throughput vs. RTT for Different Backends (Managed Mounts) - Excluded Services

700 A .
..... qo e, Service
600 - . Soans o edhEs --=e S3
= ) ---- Cassandra
= P Wi
¥ 500 A - U
c . A
3 Bl P
e 1 e T ey
= B, ML .
v 400494 e >
@ o
o g T4 .
3 s
c s .
o .
= 300 A Moy sy
— -y Snwa
s o T e S S
Seol e, e
B2004 0 e
o
2
e
F 100 1
gli = OOTSESReRES OSSR e
oms 2ms 4ms 6ms 8ms 10ms 12ms 14ms 22ms 28ms 34ms 40ms

Figure 36: Average throughput for Redis, S3 and ScylllaDB backends for managed mounts by
RIT

Throughput



Discussing Backends



Implemented Use Cases



ram-d|

ram-dl



ram-d|

Usage
TL;DR: "Upload" RAM with ram-ul , "download" the RAM with ram-dl, done!

1. Upload RAM

On a remote (or local) system, first start ram-ul . This component exposes a memory region, file or directory
as a fRPC server:

4 ram-ul --size 4294967296 =)
2023/06/30 14:52:12 Listening on :1337
2. Download RAM

On your local system, start ram-dl . This will mount the remote system's exposed memory region, file or
directory using fRPC and r3map as swap space, and umount it as soon as you interrupt the app:

]

$ sudo modprobe nbd

$ sudo ram-dl --raddr localhost:1337

2023/06/30 14:54:22 Connected to localhost:1337
2023/06/30 14:54:22 Ready on /dev/nbdo

This should give you an extra 4GB of local memory/swap space, without using up significant local memory (or
disk space):

# Before i8]
$ free -h
total used free shared buff/cache available
Mem: 3061 7.9Gi 6.561 721Mi 1661 21Gi
Swap: 8.0Gi 0B 8.0Gi
# After
$ free -h
total used free shared buff/cache available
Mem: 3061 7.9Gi 6.561 717Mi 1661 21Gi
Swap: 11G6i 0B 1161

# That's it! We hope you have fun using ram-d1, and if you're interested in more like this, be sure to check
out r3map!



tapisk



tapisk

16

19
20

[
T ke W N

[ vl O

func (b *TapeBackend) ReadAt(p [Jbyte, off int64) (n int, err error) {
// Calculating the block for the offset
block := uint64(off) / b.blocksize

// Getting the physical record on the tape from the index
location, err := b.index.GetLocation(block)

/!

// Creating the seek operation
mtop := &ioctl.Mtop{}
mtop.SetOp(ioctl.MTSEEK)
mtop.SetCount (location)

// Seeking to the record
syscall.Syscall(
syscall.SYS_IOCTL,
drive.Fd(),
ioctl.MTIOCTOP,
uintptr (unsafe.Pointer(mtop)),
)
/7

// Reading the chunk from the tape into memory
return b.drive.Read(p)




Future Use Cases



Improving Cloud Storage Clients



Universal Database, Media and Asset Streaming



Universal App State Mounts and Migrations



Conclusion



Thanks!

e
L. ]

3map

Remote mmap: High-performance remote memory region mounts and migrations in user space.

[© o c Toassing ] go version BERER oo rotronce J crat s ]
Overview

r3map s a library that simplifies working with remote memory regions and migrating them between hosts.
Itcan...

« Create avirtual [Ibyte or avirtual file that transparently downloads remote chunks only when they
are accessed: By providing multiple frontends (such as a memory region and a file/path) for accessing or
migrating a resource, integrating remote memory into existing applications is possible with little to no
changes, and fully language-independent.

« mmap any local or remote resource instead of just files: By exposing a simple backend interface and
being fully transport-independent, r3map makes it possible to map resources such as a $3 bucket,
Cassandra or Redis database, or even a tape drive into a memory region efficientl, as well as migrating it
over an RPC framework of your choice, such as gRPC.

« Enable live migration features for any hypervisor or application: r3map implements the APIs which
allow for zero-downtime live migration of virtual machines, but makes them generic so that they can be
used for any memory region, bringing live migration abilities to almost any hypervisor or application with
minimal changes and overhead.

+ Overcome the performance issues typically associated with remote memory: Despite being in user
space, r3map manages (on a typical desktop system) to achieve very high throughput (up to 3 GB/s) with
minimal access latencies (~100us) and short initialization times (~12ms).

« Adapt to jing network envi 8y various suchas
background pull and push, two-phase protocols for migrations and concurrent device
r3map can be deployed not only in low-latency, high-throughput local datacenter networks but also in
more constrained networks like the public internet.

] pojntfx/r3map

High-performance remote memory region mounts and migratii
in user space.

@®Go * 21

Efficient Synchronization of Linux Memory Regions
over a Network: A Comparative Study and
Implementation

Bachelor's thesis by Felicitas Pojtinger.

University: Hochschule der Medien Stuttgart
Course of Study: Media Informatics
Date: 2023-08-03

achelor of Science
+ Prof. Dr. Martin Goik

Abstract

Current solutions for access, synchronization and migration of resources over a network are characterized by
application-specific protocols and interfaces, which result in fragmentation and barriers to adoption. This
thesis aims to address these issues by presenting a universal approach that enables direct operation on a
memory region, circumventing the need for custom-built solutions. Various methods to achieve this are
evaluated on such as overhead, time, latency and throughput, and
an outline of each method's architectural constraints and optimizations is provided. The proposed solution is
suitable for both LAN and WAN environments, thanks to a novel approach based on block devices in user
space with background push and pull mechanisms. It offers a unified API that enables mounting and
migration of nearly any state over a network with minimal changes to existing applications. Iilustrations of
real-world use cases, configurations and backends are provided, together with a production-ready reference
implementation of the full mount and migration APIs via the open-source r3map (remote mmap) library.

0 Felicitas Pojtinger, 2023 B
(Ul rficient Synchronization of Linux Memory Regions over a Network
"W A Comparative Study and Implementation )

Felicitas Pojtinger
pojntfx - she/her

Developer specialzing in Go, DevOps
and moden frontend technologies.

dicprofie
Sponsors dashboard
325 followers 89 folowing

[ @loopholelabs

© stuegar European Urion

© ovas e a2

© felicasepoitingercom

& hpslcas pojtngercony

¥ @paintx

@ epatixemastodon social

[ ivpojnc

& hipsatosyappiprfie
felctas poftngercom

Achievements

@Qz0o8
A

G s

Organizations
By =

Author: Felicitas Pojtinger

University: Hochschule der Medien Stuttgart
Course of Study: Media Informatics

Date: 2023-08-03

Academic Degree: Bachelor of Science
Primary Supervisor: Prof. Dr. Martin Goik
Secondary Supervisor: M.Sc. Philip Betzler

pojnt i/ READHE. 3 s

TYE TIPTEURNCL W

Hi there |~

Felicitas .
modorn web &

pojntix (Felcitas Pojtinger) Top Languages by Repo

O 161k Conrbutonsin 2023

fyouwant o check out my & website, + follow me on
Bluesky where 1 post ab

Systems Development

@ wieron (% 1207 % Go ¢ AGPL 30T 2023)
Overlay networks based on WebRC.

B g0 ( 206 % Go &2 Apache 2.0 2023)
Pure Go NBD server and cent ibrary.

Tiwase ( 152 % Go 1 AGPL3.0'F 2021) bofied (4 151 % Go & AGPL3.0F 2021)

st wake and scan nodes in a network, Modern network boot server

stfs (4 28 % G0 4 AGPL 30T 2022)
Simple Tape Fil System (STFS), a il system fortapes.
and ar s,

7 ramd (470 % Go & Apache-20 ' 2023)
‘Atool to download more RAM (yes, serously)

& ramap (& 21 % Go 4 Apache-20 T 2023)
High-performance remote memry region mounts and
migrations in user space.

@ tapisk (& 6% Go 2 AGPL30 T 2023)
Expose a tape drive as a block device.

Apps
© keygaen ( 04 % Go < AGPL30'F 2023) @ multiplex (4 19 % Go % AGPL3.0 ' 2022)
sion, verty,

browser partis.

htmi2goapp (+ 16 % Go & AGPL:3.0 T 2021)
CLLand web app to convert HTML markup to go-app.dev's
syntan

@ connmapper (x 6 % Typescript 2 AGPL:3.0F 2023)
Visualze your syster'sinteret connections on a gobe.

Development Tooling

pojde ( 62 % Shell & AGPL3O'
@ octarchive ( 67 % Go 2 AGPL30F 2023) 2021

Develop
browser

drapp (4 35 % Go 52 Apache 20°F 2023)

alpimager (+ 27 % Go & AGPL3.0 T
202
Buildfast apps that run everywhere with Go and a browser engine of your

Build custom Alpine Linux images with



