HOCHSCHULE
DER MEDIEN

Bachelor’s Thesis

Efficient Synchronization of Linux
Memory Regions over a Network

A Comparative Study and Implementation

Author: Felicitas Pojtinger
University: Hochschule der Medien Stuttgart

Course of Study: Media Informatics :m; r3 m a p

Date: 2023-08-03
Academic Degree: Bachelor of Science

Primary Supervisor: Prof. Dr. Martin Goik @
Secondary Supervisor: M.Sc. Philip Betzler LoophOIe Lq bs



Introduction



Today’s Technological Landscape



What if there were a better way?
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Access Methods



Userfaults



Principle of Locality
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Figure 1: Latencies for different memory technologies showing, from lowest to highest latency,

registers, cache, main memory, CXL memory, network-attached memory, SSDs and HDDs [12]

Memory Hierarchy



Page Faults



An Overview of Userfaults



I // Creating the “userfaultfd  API
2 uffd, _, errno := syscall.Syscall(constants.NR_userfaultfd, 0, 0, 0)

| uffdioAPI := constants.NewUffdioAPI (
5) constants.UFFD_API,

6 0,

7T )

8 //

I0 // Registering a region
||l uffdioRegister := constants.NewUffdioRegister(
12 constants.CULong(start),
3 constants.CULong(1),
! constants.UFFDIO_REGISTER_MODE_MISSING,

6 //

syscall.Syscall(

13 syscall.SYS_IOCTL,

19 uffd,

20 constants.UFFDIO_REGISTER,

21 uintptr (unsafe.Pointer (4uffdioRegister))

1

14

15 )
1

I

Implementing Userfaults



|  func (a abcReader) ReadAt(p []lbyte, off int64) (n int, err error) {
2 n = copy(p, bytes.Repeat([lbyte{'A' + byte(off%20)}, len(p)))

1 return n, nil

f, err := os.0OpenFile(*file, os.0_RDONLY, os.ModePerm)
b, uffd, start, err := mapper.Register(int(s.Size()))
mapper .Handle (uffd, start, f)

b

L //
2 f, err := mc.GetObject(ctx, *s3BucketName, *s30bjectName, minio.GetObjectOptions{})

3 b, uffd, start, err := mapper.Register(int(s.Size()))
! mapper.Handle(uffd, start, f)

Implementing Userfaults



File-Based Synchronization



mmap
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Figure 2: Design flow chart of WebRsyne, showing the messages sent between and operations

done for server and client in a single synchronization cycle[25]

Delta Synchronization



How can we use mmap and Delta Synchronization?



Caching Restrictions



Detecting File Changes



Speeding Up Hashing



Protocol & Multiplexer Hub



20

// Receiving remote hashes
remoteHashes := [Jstring{}
utils.DecodeJSONFixedLength(conn, &remoteHashes)
1/

// Calculating the hashes

localHashes, cutoff, err := GetHashesForBlocks(parallel, path, blocksize)

// Comparing the hashes

blocksToSend := [lint64{}
for i, localHash := range localHashes {
//

if localHash != remoteHashes([i] {
blocksToSend = append(blocksToSend, j)

continue
¥

// Sending the non-matching hashes
utils.EncodeJSONFixedLength(conn, blocksToSend)

10

// The lock and semaphore
var wg sync.WaitGroup
wg.Add (int(blocks))

lock := semaphore.NewWeighted(parallel)
1/
// Concurrent hash calculation

for i := int64(0); i < blocks; i++ {
j =1

go calculateHash(j)

}
wg.Wait ()

// Local hash calculation

localHashes, _, err := GetHashesForBlocks(parallel, path, blocksize)

// Sending the hashes to the remote

// Receiving the remote hashes and the truncation request
blocksToFetch := [Jint64{}
utils.DecodeJSONFixedLength(conn, &blocksToFetch)

Y AR

cutoff := int64(0)

utils.DecodeJSONFixedLength(conn, &cutoff)

"src-control":
// Decoding the file name
file = "*
utils.DecodeJSONFixedLength(conn, &file)
//

syncerSrcControlConns[file] = conn

syncerSrcControlConnsBroadcaster.Broadcast (file)
//
“dst-control":
var wg sync.WaitGroup
wg.Add (1)

go func() {
// Subscription to send all future file names
1 := syncerSrcControlConnsBroadcaster.Listener (0)

for file := range 1.Ch() {
utils.EncodeJSONFixedLength(conn, file)
//
}
30

// Sending the previously known file names

for file := range syncerSrcControlConns {
utils.EncodeJSDNFixedLength(conn, file)
//

}

wg.Wait()

Delta Synchronization




Limitations



FUSE
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Figure 3: Structural diagram of FUSE, showing the user space components handled by the C
library and the FUSE library as well as the kernel components such as the Linux VFS and the

FUSE kernel module[27]

What is FUSE?



static int example_getattr(const char *path, struct stat *stbuf,
2 struct fuse_file_info *fi);

| static int example_readdir(const char #*path, void *buf, fuse_fill_dir_t filler,
2 off_t offset, struct fuse_file_info *fi,
enum fuse_readdir_flags flags);

1 static int example_open(const char *path, struct fuse_file_info *fi);

static int example_read(const char #*path, char *buf, size_t size, off_t offset, struct
fuse_file_info *fi);

FUSE Syscalls



FUSE for Memory Synchronization



Limitations



NBD
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Figure 4: Sequence diagram of the baseline NBD protocol (simplified), showing the

handshake, transmission and disconnect phases

NBD Protocol



NBD for Memory Synchronization
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|

)

type Backend interface {
ReadAt(p [lbyte, off int64) (n int, err error)
WriteAt(p [lbyte, off int64) (n int, err error)
Size() (int64, error)
Sync() error

func Handle(conn net.Conn, exports [JExport, options *Options) error

Server




Client

func Connect(conn net.Conn, device *os.File, options *0Options) error

10

16

20

// Connecting to “udev"
udevConn.Connect (netlink.UdevEvent)

// Subscribing to events for the device name
udevConn.Monitor (udevReadyCh, udevErrCh, &netlink.RuleDefinitions{
Rules: [Jnetlink.RuleDefinition{
{
Env: map[stringlstring{
"DEVNAME": device.Name(),
¥,
}7
},
b

// Waiting for the device to become available
go func() {

(WO
<-udevReadyCh

options.OnConnected ()

0O




Combining Server and Client into Mounts



Managed Mounts



RTT, LAN and WAN






Why not just NBD?



Chunking



Background Pull and Push



|  type ReadWriterAt interface {
2 ReadAt(p [lbyte, off int64) (n int, err error)
3 WriteAt(p [lbyte, off int64) (n int, err error)

Pipeline Stages



Pipeline Components

e ArbitraryReadWriterAt
e ChunkedReadWriterAt
e SyncedReadWriterAt: Background Pull and Push



Concurrent Initialization



|  type ManagedMountHooks struct {
2 OnBeforeSync func() error
3 OnBeforeClose func() error
] OnChunkIsLocal func(off int64) error

Device Lifecycle



Live Migration



Pre-Copy Migration



Post-Copy Migration



Workload Analysis



Why a new API?
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phases between the application that is being migrated, the seeder and the leecher components
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type SeederRemote struct {

ReadAt func(context
error)

Size func(context

Track func(context

Sync func(context

Close func(context

context

context

context
context

.Context,

.Context)
context.
.Context)
.Context)

Context)

length int, off int64) (r ReadAtResponse, err

(int64, error)
error

([lint64, error)
error

Seeder




T o= 0O

0000~ CT

// Suspends the remote application, flushes the mount and returns offsets that have been
written too since “Track()’
dirtyOffsets, err := l.remote.Sync(l.ctx)

// Marks the chunks as remote, causing subsequent reads to pull them again
1l.syncedReadWriter .MarkAsRemote (dirtyOffsets)

// Schedules the chunks to be pulled in the background immediately
l.puller.Finalize(dirtyOffsets)

// Unlocks the local resource for reading
1.lockableReadWriterAt.Unlock()

Leecher




Optimizations



Pluggable Encryption, Authentication and Transport



Concurrent Backends



Remote Stores as Backends



| func (b *RedisBackend) ReadAt(p [lbyte, off int64) (n int, err error) {
2 // Retrieve a key corresponding to the chunk from Redis

3 val, err := b.client.Get(b.ctx, strconv.FormatInt(off, 10)).Bytes()
i // If a key does not exist, treat it as an empty chunk

5 if err == redis.Nil {

6 return len(p), nil

7 }

8 //

9 3}

10

Il func (b *RedisBackend) WriteAt(p [Jbyte, off int64) (n int, err error) {
12 // Store an offset as a key-value pair in Redis

13 b.client.Set(b.ctx, strconv.FormatInt(off, 10), p, 0)

14 //

15 2}

Redis



10
11
12

13

func (b *S3Backend) ReadAt(p [lbyte, off int64) (n int, err error) {
// Receiving a chunk using Minio's S3 client
obj, err := b.client.GetObject(b.bucket, b.prefix+"-"+strconv.FormatInt(off, 10),
minio.GetObjectOptions{})

if err != nil {
// If an object is not found, it is treated as an empty chunk

if err.Error() == errNoSuchKey.Error() {
return len(p), nil

}
//

}

S3




ScyllaDB

func (b *CassandraBackend) ReadAt(p []lbyte, off int64) (n int, err error) {
// Executing a select query for a specific chunk, then scanning it into a byte slice
var val []byte
if err := b.session.Query( select data from “+b.table+  where key = 7 limit 17, b.
prefix+"-"+strconv.FormatInt (off, 10)).Scan(&val); err != nil {
if err == gocql.ErrNotFound {
return len(p), nil

}

return 0, err
}
//
}

func (b *CassandraBackend) WriteAt(p [lbyte, off int64) (n int, err error) {
// Upserting a row with a chunk's new content
b.session.Query( insert into “+b.table+  (key, data) values (7, 7)°, b.prefix+"-"+
strconv.FormatInt (off, 10), p).Exec()
//
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fRPC



Results and Discussion
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Access Methods



Average First Chunk Latency for Different Technologies (Oms RTT)
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Figure 8: Average first chunk latency for different direct memory access, disk, userfaultfd,
direct mounts and managed mounts (Oms RTT)
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Distribution of Latencies for Different Technologies (Oms RTT), exchuding Disk and Memory
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Figure 9: Box plot for the distribution of first chunk latency for userfaultfd, direct mounts
and managed mounts (Oms RTT)
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Average First Chunk Latency by RTT and Technology
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Figure 10: Average first chunk latency for userfaultfd, direct mounts and managed mounts by

RTT
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Average First Chunk Latency for Managed Mounts vs RTT for Different Worker Counts
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Figure 11: Average first chunk latency for managed workers with 0-512 workers by RTT
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Average Throughput for Different Technologies (Oms RTT)

userfaultfd 4

Managed Mounts |

o 2500 5000 7500 10000 12500 15000 17500 20000
Average Throughput (MB/s)}

Figure 12: Average throughput for memory, disk, userfaultfd, direct mounts and managed
mounts (Oms RTT)

Read Throughput



Average Throughput for Different Technologies (Oms RTT), excluding Disk and Memory
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Figure 13: Average throughput for userfaultfd, direct mounts and managed mounts (Oms
RTT)
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Average Throughput by RTT and Technology
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Figure 15: Average throughput for userfaultfd, direct mounts and managed mounts by RTT
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Figure 16: Average throughput for managed mounts with 0-16384 workers by RTT
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5.2.3 Write Throughput
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Figure 17: Average write throughput for direct and managed mounts by RTT
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Discussing Access Methods
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Direct Mount Initialization Time Distribution (KDE)
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Figure 18: Kernel density estimation for the distribution of direct mount initialization time
with polling vs. udev

Initialization




Average Preemptive Pulls for Managed Mounts vs RTT for Different Worker Counts
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Figure 19: Amount of pre-emptively pulled data for managed mounts with 0-4096 workers by
RTT

Initialization



Chunking
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Figure 20: Average read throughput for serv

side and client-side chunking, direct mounts

and managed mounts by RTT
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Figure 21: Average read throughput for server-side and client-side chunking with direct
mounts by RTT
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RPC Frameworks
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Figure 23: Average throughput by RTT for Dudirekta, gRPC and fRPC frameworks for

direct and managed mounts
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Average Throughput by RTT for Direct Mount RPC Frameworks
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Figure 24: Average throughput by RTT for Dudirekta, gRPC and fRPC frameworks for
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Average Throughput by RTT for Managed Mount RPC Frameworks
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Average First Chunk Latency for Different Backends (Oms RTT)
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Figure 26: Average first chunk latency for memory, file, directory, Redis, S3 and ScylllaDB
backends (Oms RTT)
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First Chunk Latency Distribution for Different Backends (Oms RTT)
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Figure 27: Box plot of first chunk latency distribution for memory, file, directory, Redis, S3
and ScylllaDB (Oms RTT)
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Average Throughput for Different Backends (Oms RTT)
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Figure 28: Average throughput for memory, file, directory, Redis, S3 and ScylllaDB backends
for direct and managed mounts (Oms RTT)
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Average Throughput for Different Backends (Direct Mount, Oms RTT)
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Figure 29: Average throughput for Redis, S3 and ScylllaDB backends for direct mounts (Oms
RTT)
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Throughput Distribution for Different Backends (Direct Mount, Oms RTT)
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Figure 30: Kernel density estimation (with logarithmic Y axis) for the throughput
distribution for Redis, S3 and ScylllaDB for direct mounts (Oms RTT)
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Average Throughput for Different Backends (Managed Mount, Oms RTT)
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Figure 31: Average throughput for Redis, S3 and ScylllaDB backends for managed mounts
(Oms RTT)
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Throughput Distribution for Different Backends (Managed Mount, Oms RTT)
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Figure 32: Box plot for the throughput distribution for Redis, S3 and ScylllaDB for managed
mounts (Oms RTT)
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Average Throughput vs. RTT for Different Backends (Direct Mounts)
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Figure 33: Average throughput for memory, file, directory, Redis, S3 and ScylllaDB backends

for direct mounts by RTT
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Average Throughput vs. RTT for Different Backends (Direct Mounts) - Excluded Services
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Figure 34: Average throughput for Redis, S3 and ScylllaDB backends for direct mounts by
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Average Throughput vs. RTT for Different Backends (Managed Mounts)
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Figure 35: Average throughput for memory, file, directory, Redis, S3 and ScylllaDB backends

for managed mounts by RTT
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Average Throughput vs. RTT for Different Backends (Managed Mounts) - Excluded Services
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Figure 36: Average throughput for Redis, S3 and ScylllaDB backends for managed mounts by
RIT
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Average Throughput vs. RTT for Different Backends (Managed Mounts) - Excluded Services
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Figure 36: Average throughput for Redis, S3 and ScylllaDB backends for managed mounts by
RIT
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Discussing Backends



Implemented Use Cases



ram-d|

ram-dl



ram-d|

Usage
TL;DR: "Upload" RAM with ram-ul , "download" the RAM with ram-dl, done!

1. Upload RAM

On a remote (or local) system, first start ram-ul . This component exposes a memory region, file or directory
as a fRPC server:

4 ram-ul --size 4294967296 =)
2023/06/30 14:52:12 Listening on :1337
2. Download RAM

On your local system, start ram-dl . This will mount the remote system's exposed memory region, file or
directory using fRPC and r3map as swap space, and umount it as soon as you interrupt the app:

]

$ sudo modprobe nbd

$ sudo ram-dl --raddr localhost:1337

2023/06/30 14:54:22 Connected to localhost:1337
2023/06/30 14:54:22 Ready on /dev/nbdo

This should give you an extra 4GB of local memory/swap space, without using up significant local memory (or
disk space):

# Before i8]
$ free -h
total used free shared buff/cache available
Mem: 3061 7.9Gi 6.561 721Mi 1661 21Gi
Swap: 8.0Gi 0B 8.0Gi
# After
$ free -h
total used free shared buff/cache available
Mem: 3061 7.9Gi 6.561 717Mi 1661 21Gi
Swap: 11G6i 0B 1161

# That's it! We hope you have fun using ram-d1, and if you're interested in more like this, be sure to check
out r3map!
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func (b *TapeBackend) ReadAt(p [Jbyte, off int64) (n int, err error) {
// Calculating the block for the offset
block := uint64(off) / b.blocksize

// Getting the physical record on the tape from the index
location, err := b.index.GetLocation(block)

/!

// Creating the seek operation
mtop := &ioctl.Mtop{}
mtop.SetOp(ioctl.MTSEEK)
mtop.SetCount (location)

// Seeking to the record
syscall.Syscall(
syscall.SYS_IOCTL,
drive.Fd(),
ioctl.MTIOCTOP,
uintptr (unsafe.Pointer(mtop)),
)
/7

// Reading the chunk from the tape into memory
return b.drive.Read(p)




Future Use Cases



Improving Cloud Storage Clients



Universal Database, Media and Asset Streaming



Universal App State Mounts and Migrations



Conclusion



Thanks!
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Remote mmap: High-performance remote memory region mounts and migrations in user space.

[© o c Toassing ] go version BERER oo rotronce J crat s ]
Overview

r3map s a library that simplifies working with remote memory regions and migrating them between hosts.
Itcan...

« Create avirtual [Ibyte or avirtual file that transparently downloads remote chunks only when they
are accessed: By providing multiple frontends (such as a memory region and a file/path) for accessing or
migrating a resource, integrating remote memory into existing applications is possible with little to no
changes, and fully language-independent.

« mmap any local or remote resource instead of just files: By exposing a simple backend interface and
being fully transport-independent, r3map makes it possible to map resources such as a $3 bucket,
Cassandra or Redis database, or even a tape drive into a memory region efficientl, as well as migrating it
over an RPC framework of your choice, such as gRPC.

« Enable live migration features for any hypervisor or application: r3map implements the APIs which
allow for zero-downtime live migration of virtual machines, but makes them generic so that they can be
used for any memory region, bringing live migration abilities to almost any hypervisor or application with
minimal changes and overhead.

+ Overcome the performance issues typically associated with remote memory: Despite being in user
space, r3map manages (on a typical desktop system) to achieve very high throughput (up to 3 GB/s) with
minimal access latencies (~100us) and short initialization times (~12ms).

« Adapt to jing network envi 8y various suchas
background pull and push, two-phase protocols for migrations and concurrent device
r3map can be deployed not only in low-latency, high-throughput local datacenter networks but also in
more constrained networks like the public internet.

] pojntfx/r3map

High-performance remote memory region mounts and migratii
in user space.
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Efficient Synchronization of Linux Memory Regions
over a Network: A Comparative Study and
Implementation

Bachelor's thesis by Felicitas Pojtinger.
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achelor of Science
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Abstract

Current solutions for access, synchronization and migration of resources over a network are characterized by
application-specific protocols and interfaces, which result in fragmentation and barriers to adoption. This
thesis aims to address these issues by presenting a universal approach that enables direct operation on a
memory region, circumventing the need for custom-built solutions. Various methods to achieve this are
evaluated on such as overhead, time, latency and throughput, and
an outline of each method's architectural constraints and optimizations is provided. The proposed solution is
suitable for both LAN and WAN environments, thanks to a novel approach based on block devices in user
space with background push and pull mechanisms. It offers a unified API that enables mounting and
migration of nearly any state over a network with minimal changes to existing applications. Iilustrations of
real-world use cases, configurations and backends are provided, together with a production-ready reference
implementation of the full mount and migration APIs via the open-source r3map (remote mmap) library.
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