
Uni App Security Notes

Notes for the Anwendungssicherheit (app security) course at HdM
Stuttgart

Felicitas Pojtinger

2022-02-01

1



Introduction



Introduction

Please check out Jakob’s notes for more detailed study materials!

2

https://github.com/JakWai01/application-security


Contributing

These study materials are heavily based on professor Heuzeroth’s
“Anwendungssicherheit” lecture at HdM Stuttgart.

Found an error or have a suggestion? Please open an issue on GitHub
(github.com/pojntfx/uni-appsecurity-notes):

Figure 1: QR code to source repository

If you like the study materials, a GitHub star is always appreciated :)
3

https://www.hdm-stuttgart.de/studierende/abteilungen/sprachenzentrum/kursangebot/kursangebot/block?sgname=Medieninformatik+%28Bachelor%2C+7+Semester%29&blockname=Anwendungssicherheit&sgblockID=2573375&sgang=550033
https://www.hdm-stuttgart.de/studierende/abteilungen/sprachenzentrum/kursangebot/kursangebot/block?sgname=Medieninformatik+%28Bachelor%2C+7+Semester%29&blockname=Anwendungssicherheit&sgblockID=2573375&sgang=550033
https://github.com/pojntfx/uni-appsecurity-notes


License

Figure 2: AGPL-3.0 license badge

Uni App Security Notes (c) 2022 Felicitas Pojtinger and contributors

SPDX-License-Identifier: AGPL-3.0

4



Organization



Organization

• 60 Minutes of test at the end
• Will have practical examples
• Threat detection plays a fundamental role in tests

5



Overview



Elements of a Secure Development Process

Primary purpose: Analysis of the data flow; data is both protected by the
GDPR and represents value of the corportation

• Requirements
• Security-Requirements
• Anti-Requirements
• Abuse cases
• Protection poker
• → Security analysis/architecture analysis

• Draft
• AuthN/AuthZ
• Drafting concepts
• Risk modelling

• Implementation
• Secure implementation guidelines
• Code review, dynamic analysis

• Tests
• Security testing plans
• Security testing cases
• Ethical hacking, pentesting, dynamic analysis

• Operations/Maintenance
• Secure initial settings
• Assumptions of runtimes
• Observation of logs
• Processes for management and reaction to breaches

• Documentation
• Installation
• Configuration
• Customization
• Operations
• → Impact area of security incidents must be visible*

6



Support Hierarchy

• Level 1: Direct support with customers; call center, non-technical
• Level 2: People who know about typical problems with the software
• Level 3: Developers of the software

7



Basics



What is Secure Software?

• Software which is protected against intentional attacks
• Every participant in the software development process should be
interested in this objective

• Software must be hardened against all known attacks (and future,
unknown attacks)

8



What is Security?

• 𝑅𝑖𝑠𝑘 = 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑏𝑟𝑒𝑎𝑐ℎ
𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑏𝑟𝑒𝑎𝑐ℎ

• A system is protected against threats compromising valuable data
using measures which lead to a reduced, accepted risk.

• Accepted risk is defined by context of use (i.e. nuclear power: very
low accepted risks)

• Safety: Protection of the environment from the functional effects a
system

• Security: Protection of the system from threats from the environment
• Concrete definitions: uni-itsec-notes#security-objectives; most
importantly (“CIA objectives”):

• Confidentiality
• Integrity
• Availability

• If there are contractions between the security objectives (anonymity
vs. accountability): The context defines which objectives dominate
over others

9

https://pojntfx.github.io/uni-itsec-notes/main.md.html#security-objectives


CISSP Domains/Certificates

• Security Engineering: Engineering and Management of Security
• Security Assessment and Testing: Designing, Performing and
Analyzing Security Testing

• Security Operations: Foundational Concepts, Investigations, Incident
Management and Disaster Recovery

• Software Development Security: Understanding, Applying and
Enforcing Software Security

• → This course strives for 80% of TPSSE compliance

10



Why Security?

• Security is context dependent: On localhost and unprotected UNIX
socket isn’t an issue, but forward it with socat and it becomes a
massive security vulnerability!

• With every change every test needs to be run again (regression
testing)

• Typically ~30 errors in every 1000 lines of code
• Growing application complexity
• Devices are more and more connected which reduces the need for
physical access

• Extensible architectures

11



Common Terms

• Exploit/Proof of Concept
• Attack
• Vulnerability
• Threat
• Error

1. Threat agent gives rise to threat
2. Threat exploits vulnerability
3. Vulnerability leads to risk
4. Risk can damage asset and causes exposure
5. Exposure can be countermeasured by a safeguard
6. Safeguard directly affects threat agent

12



Threat Agents

• Virus (i.e. infection)
• Hacker (i.e. unauthorized access)
• User (i.e. wrong config, data loss)
• Fire (i.e. damage to computers)
• Worker (i.e. leaking)
• Other corporations (i.e. industrial espionage)
• Black hats (i.e. buffer overflows, DoS)
• Intruders (i.e. physically stealing drives)

13



Researching Vulnerabilities

• Classifying vulnerabilities by severity (low, middle, high)
• Classifying vulnerabilities by exploit range (local or remote)
• Intents to find trends and attacks
• Intents to find vulnerabilities before they can be exploited
• Intents to find countermeasures

14



CVSS Metrics

Results in a number which can be used to classify the vulnerability.

• Base Score Metrics
• Exploitabilility Metrics

• AV: Attack Vector: Network, Adjacent Network, Local, Physical
• AC: Attack Complexity: Low, High
• PR: Privileges Required: None, Low, High
• UI: User Interaction: None, Required
• S: Scope: Unchanged, Change

• Impact Metrics (CIA Metrics)
• C: Confidentiality Impact: None, Low, High
• I: Integrity Impact: None, Low, High
• A: Availability Impact: None, Low, High

• Temporal Score Metrics
• E: Exploit Code Maturity: Not defined, unproven that exploit exists,
proof of concept code, functional exploit exists, high

• RL: Remediation Level: Not defined, official fix, temporary fix,
workaround, unavailable

• RC: Report Confidence: Not defined, unknown, reasonable, confirmed

• Environmental Score Metrics: Extends base score metrics, but are
specific to exploited organization

• Impact Subscore Modifiers
• CR: Confidentiality Requirement: Not defined, low, medium, high
• IR: Integrity Requirement: Not defined, low, medium, high
• AR: Availability Requirement: Not defined, low, medium, high

15



Balancing Security

• Security is always a balance between functionality and usability
• Security often means to have restrictions in terms of features

16



Writing Secure Software

• Many sections
• Secure development practices
• Secure development process (supply chain security)
• Security reviews
• Pentesting

• Time and money should be invested into all sections according to
individual risk, not only into a singular section

17



Finishing Thoughts

• Systems are only secure if all elements of the system are secure
• Perimeter and infrastructure security can not make the entire system
secure

• Applications are always connected
• Development of secure systems is not a choice, but a must!

18



Web Application Security



Legal notes

• Unauthorized breach of security systems is illegal
• Unauthorized eavesdropping is illegal
• Distribution or usage of “hacking tools” is illegal (which has however
been relativized by judges)

19



Components of Web Environments

• Web server (no business logic, static content)
• App server (business logic, Tomcat etc.)
• Databases
• Middleware
• LDAP
• Reverse Proxies
• Web Application Firewalls
• Load Balancers
• Firewalls

20



Targets

• Browser
• Transport
• Web server
• Web application
• Backend
• Network components
• Partner connections (i.e. Sentry, Monitoring etc.)

21



Risks in the Layered Architecture

• Client presentation layer: Validation
• Browser: Browser sandboxing etc.
• Encryption in transport
• Server presentation layer: Input & output validation
• Logging: Auditing
• Error handling: Secure error escalation
• All layers: Authorization & authentication checks
• Encryption to database
• Data protection in database

22



Methods to find Vulnerabilities

• Security audit
• Checks if previously established security guidelines have been
implemented

• Assessment of configuration

• Vulnerability assessment
• Scans for known vulnerabilities
• Can point in directions, but not show concrete exploits

• Pentesting
• Security audit and vulnerability assessment is included
• Shows how vulnerabilities can be exploited

23



Pentesting Process

1. Pre-Attack Phase
1.1 Rules of engagement must be noted in a contract
1.2 Customer’s requirements need to be queried
1.3 Enumeration

1.3.1 Passive: Enumerating without having access to client’s network
1.3.2 Active: Scanning

2. Attack Phase:
2.1 Perimeter breach
2.2 Access
2.3 Exploit/privilege escalation
2.4 Keeping access
2.5 Removing all traces

3. Post-Attack Phase:
3.1 Restoring the pre-attack state
3.2 Writing the report
3.3 Posting recommendations on how to continue (i.e. fixing the

vulnerabilities)
24


	Introduction
	Contributing
	License

	Organization
	Overview
	Elements of a Secure Development Process
	Support Hierarchy

	Basics
	What is Secure Software?
	What is Security?
	CISSP Domains/Certificates
	Why Security?
	Common Terms
	Threat Agents
	Researching Vulnerabilities
	CVSS Metrics
	Balancing Security
	Writing Secure Software
	Finishing Thoughts

	Web Application Security
	Legal notes
	Components of Web Environments
	Targets
	Risks in the Layered Architecture
	Methods to find Vulnerabilities
	Pentesting Process


