Uni DB1 Syntax Details

Syntax details for the DB1 (databases) course at HdM Stuttgart

Felicitas Pojtinger

2022-02-01

“so basically i am monkey” - monke, monkeeee

Acknowledgements

Acknowledgements

Most of the following is based on the Oracle Tutorial.

https://www.oracletutorial.com/oracle-basics/

Reset Everything

Reset Everything

Run the following to get the commands to drop all tables and their
constraints:

begin

for i in (select index_name from user_indexes where index_r
execute immediate 'dropgindexy' || i.index_name;

end loop;

for i in (select trigger_name from user_triggers) loop
execute immediate 'dropytriggery' || i.trigger_name;

end loop;

for i in (select view_name from user_views) loop
execute immediate 'dropgviewy' || i.view_name;

end loop;

SQL

Operator Description

= Equality

I= <> Inequality

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

IN Equal to any value in a list of values
ANY/ SOME/ Compare a value to a list or subquery. It must be preceded
ALL by another operator such as =, >, <

NOT IN Not equal to any value in a list of values
[NOT] Equivalent to [Not] >= n and <= .
BETWEEN n

and m

[NOT] EXISTS

Return true if subquery returns at least one row

- An inner join matches stuff in both tables:

select a.id as id_a, a.color as color_a, b.id as id_b, b

- A left (outer) join matches everything in the left tables plus what
matches in the right table:

select a.id as id_a, a.color as color_a, b.id as id_b, b

- This left (outer) join matches everything that is in the left table and
not in the right table:

select a.id as id_a, a.color as color_a, b.id as id_b, b

- Aright (outer) join matches everything in the right join plus what
matches in the left table:

select a.id as id_a, a.color as color_a, b.id as id_b, b
6

- You can alias long column names with
select mylongname as name from contacts or just

select mylongname name from contacts. The as keyword is optional.

uu

Full-text column names are supported by enclosing in ““ as can also
format strings:
select first_name || ' ' || last_name as "Name” from employees;

yields Alice, Bob and System.

- You can also create a table alias (using from employees e), but you
CAN'T USE the as keyword.

Limits and Pagination

- The Oracle equivalent of filter is fetch n next rows only:
select * from products order by list_price desc fetch next 5 rows only;.

- You may also use the fetch next n percent rows only:
select x from inventories order by quantity desc fetch n
- Filtering by for example a quantity, and you only want the first 10
“condition matches”? Use fetch n next rows with ties:

select » from inventories order by quantity desc fetch n

- Need Pagination? Use offset:

select x from products order by standard_cost desc offse

Dates and Intervals

- Want to extract a year from a date? Use extract:

select x from orders where status = 'Shipped' and extrac

- Want to get the current date? Use current_date:

select current_date from dual;

- The to_char function can convert dates (and timestamps) to chars:

select to_char(sysdate, 'YYYY-MM-DD') from dual;

- The to_date function can convert chars to dates:

select to_date('2021-01-12"', 'YYYY-MM-DD') from dual;

- Alternatively, the date literal uses the YYYY-MM-DD format and does
not require format specs:

select date '1969-04-20"' from dual;

Expressions

- Only single quotes are supported.
- Comparisons are done with =, NOT ==,

- It also supports full expression evaluation:

select product_name as "ProductyName”, list_price - standard

- You can use () in where clauses to prioritize:

select % from orders where (

status = 'Canceled' or status = 'Pending'
order by order_date;

) and customer

- The in keyword is a useful tool for sub collections and subqueries:

select % from orders where salesman_id in (54, 55, 56) order by order_id;

select * from orders where salesman_id not in (54, 55, 56) order by ordefid

Grouping and Ordering

- You can use functions like upper and dates when ordering.
- The group by keyword can be used to find unique data:

select status from orders group by status;

- By combining group by with count you can count the amount of
unique data:

select status, count (%) from orders group by status;

- group by can also be used with the where keyword:

select name, count(x) as "Shipped_Orders” from orders in

- where can NOT APPEAR AFTER group by; use the having keyword
instead.

- The having keyword enables you to filter like with where, but after i

Counting and Sums

- You can count the amount of rows with the count() function:

select count(x) from products

- The sum function can be used to calculate a total:
select sum(unit_price % quantity) from order_items;
- It can also be used to calculate a total per row (the group by order_id
part is required; group by order_value does not work):

select order_id, sum(unit_price % quantity) as order_vall

- Itis a good idea to always specify the columns when inserting:

insert into discounts(discount_name, amount, start_date,

- You can also “insert from select” using insert into:

insert into sales(customer_id, product_id, order_date, t

- It's even possible to “create a table from select” using
create table x as, basically coping its schema (where 1= 0 skips
copying the rows):

create table sales_2017 as select x from sales where 1

- Using insert all, it is possible to insert multiple rows at once (note
the lack of commas between the into keywords. Here, the subquery
is ignored/a placeholder.):

13
insert all into fruits (fruit_name, color) values ('Appli

- Using case it is possible to create if/else constructs:

select product_name, list_price, case category_id when 1

- case is also useful for conditional grouping:

select x from locations order by country_id, case countr

- case also evaluates to an expression, so you can use it for
conditional updates:

update products set list_price = case when list_price <

14

Helper Functions

- You can extract substrings with substr:
select substr(*Alex', 1, 1) from dual;

- Stuff like select upper('uwu') from dual can come in handy.

- Using round it is possible to round numbers (returns 5.23):

select round(5.234234234234, 2) from dual;

- You can use replace to replace strings:

update accounts set phone = replace(phone, '+1-"

;)

- You can use the floor, round and ceil functions to get rounded
values.

Auto-Generated Primary Keys

- generated by default as identity is quite useful for

auto-incrementing columns such as PKs:

create table persons (person_id number generated by def

- generated always as identity is the same but does not allow setting
it manually.

Modifying Columns

- You can use desc mytable to show the schema for a table.

- alter table can be used to add columns using add:

alter table persons add birthdate date not null;

- You can also add multiples at once (note that there is no column
keyword):

alter table persons add (phone varchar2(20), email varc

- modify can change the column type (note that there is no column
keyword):

alter table persons modify birthdate date null;

- drop column can be used to remove a column

alter table persons drop column birthdate; 17

Virtual Columns

- You can create virtual columns in regular tables without using views

with alter table x add .. as (note the required (after the as
keyword):

alter table parts add (capacity_description as (case wh

- The size of a varchar? is adjustable afterwards (note that this checks

if any current varchar2s are larger than the new size and fails if they
are.):

alter table persons modify first_name varchar2(255);

Modifying Tables

- You can drop a table with drop table:

drop table people;

- Appending purge clears the recycle bin; appending
cascade constraints drop all related constraints.

- You can clear a table using truncate table:

truncate table customers_copy;

- The same limitations as with drop table concerning constraints apply,
so appending cascade (WITHOUT constraints) drops all related ones.

- You can clear the recycle bin with:

purge recyclebin;

19

- It is possible to add constraints (any constraints, a primary key in
this example) after creating a table with add constraint:

alter table purchase_orders add constraint purchase_orde

- You may remove a constraint with drop constraint:

alter table purchase_orders drop constraint purchase_ord

- Instead of removing it, you can also use disable constraint:

alter table purchase_orders disable constraint purchase_

- And re-enable it with enable constraint:

alter table purchase_orders enable constraint purchase_o

- You can also add foreign key constraints:

20
alter table suppliers add constraint suppliers_supplier_g

- You can create a number within a range: number(1,0).

- The number type is used for all types of numbers by specifying
precision and scale: number(6) (or number(6,0)) is a signed integer
fitting 6 digits, number(6,2) is a float with two digits precision. The DB
doesn't just cut of numbers, it rounds them.

- The float type can be emulated by the number type, i.e. float (2) is
equal to number(38,2). The argument is in bits instead of digits
though.

- The lengthdb function can be used to get the length of field in bytes.

- The char type has a fixed length: name char(10) or name
char(10 bytes), meaning that a char always takes up the amount of
bytes set. nchar is the same but UTF-8 or UTF-16 any doesn’t take
bytes.

- The varchar2 type also takes an argument for the length in bytes,
which in ASCII corresponds to the amount of characters. nvarchar2 is 2!

- You can create a view with create view x as select

create view employees_years_of_service as select employe
- If used with create or replace view, upserts are possible.
- By appending with read only, you can prevent data modifications:

create or replace view employees_years_of_service as sel
- drop view x removes the view.

- Deletions and updates on views are usually fine, but inserts can
often be not that useful due to fields being excluded from the view;
see instead of triggers later on for a solution;

- Subqueries can be used in selects:

select = from (select * from products) where list_pripe

Indexes

- You can create an index with create index:

create index members_last_name on members(last_name);

- You can also create an index spanning multiple columns:

create index members_full_name on members(first_name, las

- You can drop an index with drop index:

drop index members_full_name;

23

PL/SQL

Block Structure

- Block structure:

declare

-- declarations

begin

-- your logic
exception

-- exception handling
end;

- The most simple example is as follows:

begin
dbms_output. put_Lline('HellogWorld! ");
end;

’

- Use put_line from the dmbs_output package to print to stdout. Z

- PL/SQL extends SQL by adding a boolean type (which can have the
values true, false and null).

- Variables need not be given a value at declaration if they are
nullable:

declare
total_sales number(15,2);
credit_limit number(10,0);
contact_name varchar2(255);
begin
null;
end;

- You can use default as an alternative to the := operator when

assigning variables in the declaration section. DO NOT use = when -

Jccionment even re-acssiocnment al<o tices =

Fetching Data

- Use select .. into to fetch data into variables; %TYPE infers the
type of a column:

declare
customer_name customers.name%TYPE;
customer_credit_limit customers.credit_Limit%TYPE;
begin
select
name, credit_limit
into
customer_name, customer_credit_limit

from customers where customer_id = 38;

dbms_output. put_Lline (customer_name || ":n' || custon
end;

1

26

Branches and Expressions

if .. then .. end if can be used for branching:
declare

sales number := 20000;
begin

if sales > 10000 then
dbms_output. put_Lline('Lotsgofysales! ");
end if;
end;

- Inline expressions are also supported:

large_sales := sales > 10000

- Booleans need not be compared with my_bool = true, a simple

if my_bool then is fine.
27
. alepif then i< NOT valid svntax: elsif then i< valid syntax

IIiHHHH%iII

- You may use the case keyword for switch cases:

declare
grade char(1);
message varchar2(255);
begin
grade := 'A’;

case grade
when 'A' then
message := 'Excellent';
when 'B' then
message := 'Great';
when 'C' then
message := 'Good';

28
when 'D' then

Labels and Goto

- A label/goto equivalent is also available:

begin
goto do_work;
goto goodbye;

<<do_work>>

dbms_output. put_Lline ('mawahaha');
<<goodbye>>

dbms_output. put_Lline ('Goodbye! ');
end;

29

- The equivalent of the while loop is the loop. exit/continue prevents
an infinite loop:

declare
i number := 0;
begin
loop
[N
dbms_output. put_Lline('Iterator:y' || i);
if i >= 10 then
exit;
end if;
end loop;

30

Types and Objects

- You can also use %ROWTYPE to infer the type of a row and select an

entire row at once:

declare
customer customers%ROWTYPE;
begin

select * into customer from customers where customer

dbms_output. put_Lline (customer.name || '/' || custome
end;

- It is also possible to use OOP-style object/row creation thanks to
%ROWTYPE:

declare

person persons%»ROWTYPE;
31

IIEHHHHHiHEIII

- You can create custom exceptions:

declare

e_credit_too_high exception;

pragma exception_init(e_credit_too_high, -20001);
begin

if 10000 > 1000 then

raise e_credit_too_high;

end if;

end;

- If you want to raise a custom exception, use raise_application_error:

declare
e_credit_too_high exception;
pragma exception_init(e_credit_too_high, -20001);

begin ?

Cursors

- Using cursors, you can procedurally process data:

declare
cursor sales_cursor is select = from sales;
sales_record sales_cursor%ROWTYPE;

begin
update customers set credit_limit = 0;

open sales_cursor;

loop
fetch sales_cursor into sales_record;
exit when sales_cursor%NOTFOUND;

update

38
customers

- The DB can also lock fields for safe multiple access:

declare

cursor customers_cursor

is select = from customers f
begin

for customer_record in customers_cursor loop

update customers set credit_limit = 0 where custc
end loop;

end;

1

34

Procedures

- You can create procedures, which are comparable to functions:

create or replace procedure

print_contact(customer_id_arg number)

is
contact_record contacts%rowtype;
begin
select * into contact_record from contacts where cus
dbms_output. put_Lline(contact_record.first_name || ',
end;

- These procedures can then be executed:

begin

print_contact(50);

35
end;

Functions

- Functions are similar, but require returning a value:

create or replace function

get_total_sales_for_year(year_arg integer)

return number

is

total_sales number := 0;

begin

select sum(unit_price * quantity) into total_sales
from order_items

inner join orders using (order_id)

where status = 'Shipped’

group by extract(year from order_date)

having extract(year from order_date) = year_arg;

36
return total_sales;

- Packages can be used to group function “interfaces” and variables:

create or replace package order_management

as

shipped_status constant varchar(10) := 'Shipped"';
pending_status constant varchar(10) := 'Pending';
cancelled_status constant varchar(10) := 'Canceled';

function get_total_transactions return number;

end order_management;

- You can now access the variables in the package with .:

begin

end;

dbms_output. put_Lline (order_management.shipped_status

37

- Triggers follow a similar structure as procedures:

declare

-- declarations

begin

-- your logic
exception

-- exception handling

end;

- Using triggers, you can for example create a manual log after

operations with after update or delete on ...:

create or replace trigger customers_audit_trigger
after update or delete
on customers

38
for each row

- Maps are also possible in PL/SQL using table of:

declare
type country_capitals_type
is table of varchar2(100)
index by varchar2(50);

country_capitals country_capitals_type;

begin
country_capitals('China') := 'Beijing"';
country_capitals('EU") := 'Brussels';
country_capitals('USA') := 'Washington';
end;

- You can use mymap.first and mymap.next to iterate:

39
declare

- Using varray, it is also possible to create arrays:

declare
type names_type is varray(255) of varchar2(20) not n

names names_type := names_type('Albert', 'Jonathan',
begin
dbms_output. put_Lline('Length beforegappend:y' || nam

names. extend ;
names(names. last) := 'Alice’';
dbms_output. put_Lline('Lengthyafterpappend: ' || name

g 40
names. trim;

	Acknowledgements
	Reset Everything
	SQL
	Operators
	Joins
	Aliases
	Limits and Pagination
	Dates and Intervals
	Expressions
	Grouping and Ordering
	Counting and Sums
	Inserting
	Switches
	Helper Functions
	Auto-Generated Primary Keys
	Modifying Columns
	Virtual Columns
	Modifying Tables
	Constraints
	Types
	Views
	Indexes

	PL/SQL
	Block Structure
	Variables
	Fetching Data
	Branches and Expressions
	Switches
	Labels and Goto
	Loops
	Types and Objects
	Exceptions
	Cursors
	Locks
	Procedures
	Functions
	Packages
	Triggers
	Maps
	Arrays

