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1.1 Contributing

These study materials are heavily based on professor Kriha’s “Verteilte Systeme” lecture at HdM
Stuttgart and prior work of fellow students.

Found an error or have a suggestion? Please open an issue on GitHub (github.com/pojntfx/uni‑
distributedsystems‑notes):

Figure 1: QR code to source repository

If you like the study materials, a GitHub star is always appreciated :)

1.2 License

Figure 2: AGPL‑3.0 license badge
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1.3 Course Timeline

This courseondistributed systems covers a rangeof topics related to thedesign, implementation, and
management of distributed systems. The course is divided into several sections, including:

1. Introduction todistributedsystems: This sectionprovidesanoverviewofdistributed systems
and their key characteristics.

2. Theoreticalmodels of distributed systems: This section covers the use of theoreticalmodels,
such as queuing theory and process and I/O models, to understand and analyze distributed
systems.

3. Message protocols: This section covers the use of message protocols, including delivery guar‑
antees, causality, and reliable broadcast, to facilitate communication between components in
a distributed system.

4. Remoteprocedurecalls: This section covers theuseof remoteprocedure calls (RPCs) to invoke
functions on a remotemachine, as well as different RPCmechanisms such asmarshaling, thrift,
and gRPC.

5. Distributed objects: This section covers distributed objects such as CORBA, RMI and DCOM.
6. Distributed business components: This sections covers general component technology as

well as Enterprise Java Beans (EJBs).
7. Services: This sections covers a distribution paradigm between hype and revolution.
8. Theoretical foundations of distributed systems: This section covers key concepts and the‑

ories that are relevant to the design of distributed systems, including the FLP theorem, time,
causality, consensus, eventual consistency, and optimistic replication.

9. Distributed services and algorithms I: This section covers the design and implementation
of various distributed services and algorithms, including load balancing, message queues,
caching, and consistent hashing.

10. Distributed services and algorithms II: This section covers more advanced topics in dis‑
tributed services, including persistence, transactions, eventual consistency, and coordination.

11. Design of distributed systems: This section covers themethodology and principles for design‑
ing distributed systems, as well as examples of different architectures and design patterns.

2 Introduction to Distributed Systems

2.1 Overview

1. Definition of a distributed system (DS)
2. Challenges for developers working with DS
3. Reasons for using a DS
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4. Examples of DS
5. Characteristics of DS
6. Middleware for DS
7. Concepts and architectures in DS, including scale, parallelism, and latency
8. Resources related to DS

2.2 Reasons for Distributing Systems

2.2.1 Definition of a Distributed System

A system that ismade up of independent agents that interact with each other and produce a cohesive
behavior. The interactions and events in this system happen concurrently and in parallel, meaning
that they occur simultaneously and independently of one another. This type of system is often used
to perform tasks that are too complex or large for a single agent to handle, and the concurrent and
parallel nature of the interactions allows for efficient and effective processing of the tasks.

2.2.2 Emergence

Four types of emergence: strong emergence, weak emergence, evolutionary emergence, and con‑
structed emergence.

• Strong emergence refers to situationswhere it is not possible to predict whatwill emerge from
the interactions of the system.

• Weak emergence refers to situations where simple principles combine to produce surprising
results.

• Evolutionary emergence refers to the complex but robust development of a system over time,
such as the transformation of an egg into a human being.

• Constructed emergence refers to the complex but oftennot robust emergence of a system that
has been intentionally designed, such as a distributed system.

Emergent failuremodes: Instances of cascading failures in constructed emergence.

2.3 Why are Distributed Systems complicated?

• One reason is emergence, which refers to the complex and often unexpected behaviors that
can arise whenmultiple components of a system interact with each other.

• Another reason is thesinglemachineview, whichcanmake itdifficult tounderstandanddebug
issues that arise in a distributed system.
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• Errors are also an inherent part of distributed systems, and developers must be prepared to
handle and troubleshoot these errors.

• Additionally, there is no“free lunch” in distributed systems,meaning that there is always some
trade‑off or cost associated with every design decision.

• Finally, developing a distributed system involves total end‑to‑end systemengineering, which
can be a complex and time‑consuming process.

• All distributed systems algorithms are also based on the failures that are expected and how
they are handled, which can add to the complexity of developing a distributed system.

2.3.1 Why Distribute a System?

There are several reasons why an organization might choose to use a distributed system:

• Robustness/resilience: Distributed systems are designed to be resistant to single points of
failure, which makes them more resilient and able to handle unexpected issues. This can be
achieved through techniques such as replication, which allows data to be stored on multiple
servers to ensure that it is still available even if one server fails.

• Performance: Distributed systems can be designed to split processing into independent parts,
which can improve overall performance by allowing different parts of the system to operate in
parallel.

• Scalability/throughput: Distributed systems can be designed to handle large numbers of re‑
quests per second, making them well‑suited for applications that need to scale to handle high
levels of traffic.

• Security: Distributed systems can be used to create different security domains, which can help
to protect sensitive data and ensure that it is only accessed by authorized users.

• Price per request: Distributed systems can be designed to use cheaper horizontal scaling or
free resources, which can help to reduce the cost of processing each request.

2.3.2 Examples of Distributed Systems

There are many examples of distributed systems, including:

• Energy grids and telecomnetworks: These systems distribute electricity and communication
signals across large geographic areas, often using complex networks of wires and other infras‑
tructure.

• Villages, towns, and cities: These systems are examples of distributed systems that are made
up ofmany interconnected parts, including homes, businesses, roads, and other infrastructure.

• IT infrastructure of large companies: Many large companies rely on distributed systems to
manage their IT infrastructure, including servers, storage, and networks.
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• High‑performance clusters: These systems are used to perform complex calculations and sim‑
ulations, often in scientific or technical fields.

• Google, Facebook, and other internet companies: These companies rely on distributed sys‑
tems to power their online platforms and services, including search, social networking, and ad‑
vertising.

• The web: The internet itself is a distributed system, made up of millions of interconnected
servers and devices that share information and resources.

• The human body, organizations, and states: These systems are examples of distributed sys‑
tems that are made up of many interconnected parts, each of which plays a specific role in the
overall functioning of the system.

• A flock of birds: A flock of birds is an example of a distributed system in nature, with each bird
communicating and coordinating with the others to achieve a common goal.

2.4 Characteristics of Distributed Systems

2.4.1 Overview

• Influence of distribution topology and remoteness: The physical layout of a distributed sys‑
temand the distance between its components can have a significant impact on its performance
and behavior.

• Emergent behaviors and concurrent events: Distributed systems can exhibit complex and of‑
tenunexpectedbehaviors as a result of the interactionsbetween their components. Concurrent
events, inwhichmultipleparts of the systemareexecutingat the same time, canalso contribute
to this complexity.

• Few analytic solutions and few model‑based approaches: There are often few analytic so‑
lutions ormodel‑based approaches available for understanding and predicting the behavior of
distributed systems, which canmake them challenging to design and debug.

• Heterogeneous components: Distributed systems often consist of a wide variety of compo‑
nents, eachwith its ownhardware, software, andother characteristics. This canmake it difficult
to ensure that all components are compatible and work together effectively.

• No global time: In a distributed system, there is no single, global clock that all components
can use to coordinate their activities. This can make it difficult to synchronize the actions of
different parts of the system.

• A strong need for security: Distributed systems often handle sensitive data or perform critical
functions, which makes security a key concern.

• Concurrency, parallelism, and replication: Distributed systems often rely on concurrency,
parallelism, and replication to improve performance and resilience.
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• Failure models define everything: The design and behavior of distributed systems are often
shapedby the failuremodels that are used todefinehow the systemshould respond todifferent
types of failures.

2.4.2 Eight Fallacies of Distributed Computing

• The network is reliable: This fallacy assumes that the network is always available and that
communication between components will always be successful. In reality, networks can expe‑
rience outages or other problems that can disrupt communication.

• Latency is zero: This fallacy assumes that there is no delay in communication between compo‑
nents,which is not always the case. Latency, or the time it takes for amessage to travel fromone
component to another, can vary depending on thedistancebetween components andother fac‑
tors.

• Bandwidth is infinite: This fallacy assumes that there is an unlimited amount of capacity avail‑
able for transmitting data, which is not always the case. Network bandwidth is a finite resource
that can become congested, leading to slower communication speeds.

• The network is secure: This fallacy assumes that the network is invulnerable to security
threats, such as hacking or data breaches. In reality, networks can be vulnerable to these types
of threats, and it is important to implement appropriate security measures to protect against
them.

• Topology doesn’t change: This fallacy assumes that the physical layout of the network, or its
topology, will not change over time. In reality, the topology of a network can change due to
factors such as the addition or removal of components or changes in the physical infrastructure.

• There is one administrator: This fallacy assumes that there is a single person or group respon‑
sible for administering the network, which is not always the case. Distributed systems can have
multiple administrators, each with different responsibilities and roles.

• Transport cost is zero: This fallacy assumes that there is no cost associated with transmitting
data over the network, which is not always the case. In reality, there are often costs associated
with networking, including hardware and software expenses andmaintenance costs.

• The network is homogeneous: This fallacy assumes that all components of the network are
the same, which is not always the case. In reality, distributed systems often consist of a variety
of components with different hardware, software, and other characteristics.

2.4.3 Programming Languages and Distributed Systems

Thereare twomainapproaches toprogramming languagesanddistributedsystems: the transparency
camp and the message camp.
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The transparency camp focuses on hiding the complexity of a distributed system from the program‑
mer. This can be achieved through techniques such as creating type‑safe interfaces and calls, and
hiding security, storage, and transactions behind frameworks such as .NET or Enterprise Java Beans
(EJBs). This approach treats the distributed system as a programmingmodel, rather than something
that requires special handling.

The message camp, on the other hand, takes a more direct approach to programming distributed
systems. This approach typically involves using a simple create, read, update, delete (CRUD) interface
and using message content as the interface. Messages are often coarse‑grained, meaning that they
carry a large amount of data in a single message, often in the form of documents. Programmers in
this campdeal with the complexity of remoteness directly, and architectures are often event‑based or
based on the representational state transfer (REST) model.

2.4.4 History of Distributed Systems

The history of distributed systems can be divided into several distinct periods:

• 1950s‑1980s: During this period, basic researchwas conducted on topics such as time, consen‑
sus, and computability, which laid the foundations for the development of distributed systems.

• 1990s: In the 1990s, distributed systems were used to connect Intranet applications using
technologies such as Common Object Request Broker Architecture (CORBA), Remote Proce‑
dure Calls (RPC), and Distributed Component Object Model (DCOM). Client‑server web servers
also became popular during this period. Programming models dominated the design and
development of distributed systems.

• 2000s: In the 2000s, distributed systemswere used to power peer‑to‑peer software for file shar‑
ing and large social sites emerged, which posed new challenges in terms of scalability and per‑
formance. Message passing andparallel batch processing techniques such asmap/reducewere
developed to address these challenges. This period also saw the emergence of in‑memory com‑
puting and the CAP theorem,which established that it was not possible for a distributed system
to simultaneously provide all three of the following properties: consistency, availability, and
partition tolerance.

• 2010andbeyond: In the2010sandbeyond, distributed systemshavebeenused topower large‑
scalewarehousing systems, fan‑out architectures, and real‑time streamprocessing. Flashmem‑
ory and network performance have become key considerations, and microservices and server‑
less computing have emerged as popular approaches to designing and building distributed sys‑
tems.
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2.4.5 Metcalfe’s Law

Metcalfe’s law is a principle that states that the value or utility of a network increases as the number of
users in the network increases. This is because themore people who are using the network, themore
useful it becomes as a platform for communication, collaboration, and the exchange of information
and resources. The adoption rate of a network also tends to increase in proportion to the utility pro‑
vided by the network, which is why companies often give away software or other products for free in
order to increase the size of their user base and the value of their network.

Metcalfe’s law is often cited as a factor that can contribute to the emergence of scale‑free, or power
law, distributions in networks. This type of distribution is characterized by a few nodes (or users) with
many connections, and many nodes with only a few connections. The existence of network effects,
in which the value of a network increases with the number of users, can help to explain why we don’t
seemany Facebooks or Googles – it can be difficult for new networks to gain traction and achieve the
same level of utility as established networks with a large user base.

2.4.6 Security Topics for Distributed Systems

Security is an important concern indistributed systems, as theyoftenhandle sensitivedataorperform
critical functions. Some key security topics that are relevant to distributed systems include:

• Authentication: This refers to the process of verifying the identity of a user or device. In a dis‑
tributed system, authentication may be used to ensure that only authorized users can access
certain resources or perform certain actions.

• Authorization: This refers to the process of granting or denying access to specific resources or
actions based on the identity of a user or device. In a distributed system, authorization controls
may be used to ensure that users can only perform actions that are appropriate for their role or
level of access.

• Confidentiality: This refers to the protection of information from unauthorized access or dis‑
closure. In a distributed system, confidentiality may be achieved through techniques such as
encryption or the use of secure channels for communication.

• Integrity: This refers to the protection of information from unauthorized modification or tam‑
pering. In a distributed system, integrity may be maintained through techniques such as hash‑
ing or the use of digital signatures.

• Non‑repudiation: This refers to the ability to prove that a specific actionor transactionwasper‑
formedbyaparticular user or device. In adistributed system, non‑repudiationmaybeachieved
through techniques such as digital signatures or the use of timestamps.

• Privacy/anonymity: These refer to the protection of personal information and the ability to
use a system without revealing one’s identity. In a distributed system, privacy and anonymity
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may be achieved through techniques such as the use of pseudonymous identities or the use of
encryption to protect communications.

• Firewalls: A firewall is a security system that controls incoming and outgoing network traffic
based on predetermined security rules. In a distributed system, firewalls can be used to pro‑
tect against unauthorized access and to prevent malicious traffic from entering or leaving the
system.

• Certificates, public key infrastructure (PKI), and digital signatures: These are tools and
techniques that are used to establish trust and authentication in a distributed system. Certifi‑
cates, for example, can be used to verify the identity of a user or device, while PKI is a system
that manages the issuance and revocation of certificates. Digital signatures are used to verify
the authenticity of a message or document.

• Encryption: Encryption is a technique that is used to protect information from unauthorized
access or disclosure. In a distributed system, encryption can be used to secure communication
channels and to protect data at rest. There are a variety of encryptionmethods anddevices that
can be used to achieve this goal.

• Software architecture: The design and organization of the software components in a dis‑
tributed system can have a significant impact on its security. It is important to consider security
throughout the software development process and to design the systemwith security in mind.

• Intrusion detection: This refers to the process of identifying and responding to unauthorized
access or activity in a distributed system. Intrusion detection systems are used to monitor the
system for signs of an attack or other security breach, and to alert administrators or take other
appropriate action when an incident is detected.

• Sniffing: This refers to the practice of intercepting and monitoring network traffic in order to
gather information or to perform other malicious actions. In a distributed system, sniffing can
be used to capture sensitive data or to disrupt communication.

• PGP, SSL, etc.: These are tools and protocols that are used to secure communication in a dis‑
tributed system. PGP (Pretty Good Privacy) is a data encryption and decryption program, while
SSL (Secure Sockets Layer) is a protocol for establishing secure links between networked

• Denial of service (DoS) attacks: These are attacks that are designed to disrupt the availability
of a network or system by flooding it with traffic or other requests, thereby preventing legiti‑
mate users from accessing the system. In a distributed system, DoS attacks can be particularly
disruptive as they can affect multiple components at once.

2.4.7 Theoretical Foundations of Distributed Systems

The theoretical foundations of distributed systems are a set of concepts and principles that form the
basis for the design and analysis of these systems. Some of the key theoretical foundations of dis‑
tributed systems include:
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• Noglobal time: In a distributed system, it is not possible to rely on a single, global clock to coor‑
dinate events. Instead, techniques such as logical clocks and vector clocks are used to provide
a partial ordering of events within the system.

• FLP theorem of asynchronous systems: The FLP (Fischer, Lynch, and Patterson) theorem
states that it is impossible to design an asynchronous distributed system that is both safe and
live (that is, capable of making progress). This theorem highlights the challenges of building
distributed systems that can handle failures or delays in communication.

• Failure detection and timeout: One of the challenges of distributed systems is detecting fail‑
ures or delays in communication and deciding how to respond to them. Timeout mechanisms
are often used to detect failures, but setting appropriate timeout values can be difficult.

• Concurrency and deadlocks: In a distributed system, multiple processes may execute concur‑
rently, which can lead to situations where two or more processes are waiting for each other to
complete before they can make progress. This is known as a deadlock, and can be difficult to
resolve in a distributed system.

• CAP theorem: The CAP (consistency, availability, partitioning) theorem states that it is impos‑
sible for a distributed system to simultaneously provide all three of the following properties:
consistency, availability, and partition tolerance. This theorem highlights the trade‑offs that
must be made when designing a distributed system.

• End‑to‑end argument: The end‑to‑end argument states that certain functions should be
placed at the endpoints of a system, rather than in the middle, in order to maximize flexibility
and modularity. This principle is often applied in distributed systems to determine where
certain functions should be implemented.

• Consensus, leader selection, etc.: Consensus is the process of agreeing on a single value or
decision in a distributed system. This can be challenging in the presence of failures or delays,
and requires mechanisms such as leader selection or voting to resolve.

2.4.8 Distributed Systems Design Fields

The design of a distributed system involves addressing a number of common problems and consider‑
ing various architectural factors in order to create a system that is scalable, reliable, and secure. Some
key considerations in distributed system design include:

• Commonproblems: Whendesigning adistributed system, it is important to consider a number
of common problems that can impact the performance, reliability, and security of the system.
These include issues such as fail‑over, maintenance, policies, and security integration.

• Information architecture: The information architecture of a distributed system refers to the
way in which information is organized and structured within the system. This includes defining
and qualifying the various information fragments and flows that make up the system.
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• Distribution architecture: The distribution architecture of a distributed system refers to the
layoutandorganizationof thevarious componentsof the systemandhowtheyare connected to
each other. This includes creating amap of all participating systems and their quality of service,
and determining how communication and resource sharing will bemanagedwithin the system.

2.5 Middleware

2.5.1 An Introduction to Middleware

Middleware is software that sits between the operating system and the application layer of a dis‑
tributed system, providing a layer of abstraction that enables communication and resource sharing
among the various components of the system. Some key characteristics of middleware include:

• It is used to facilitate the creation of distributed applications.
• Provides glue code and generators that allow different programming languages and systems to
interoperate.

• Controls messages and enforces delivery guarantees, such as at‑least‑once delivery.
• Reorders requests from participants to create a causal or total ordering.
• Takes over responsibility for messages andmay store them temporarily.
• Creates groups of nodes that process events together and controls fail‑over.
• Hides differences in hardware, location of services, and offers load balancing.
• Allows filtering of requests or provides means to add additional security information to calls.
• Provides powerful services such as locking, scheduling, andmessaging to applications.
• Offers frameworks that provide automatic storage, security checks, and transactional control.
• Supports message bus architectures that provide loose coupling through publish/subscribe
functions.

The importanceofmiddleware indistributed systemscannotbeoverstated. It is essential for enabling
communication and resource sharing among the various components of the system, and for abstract‑
ing away the complexities of working with distributed systems. Without middleware, it would be
muchmore difficult to develop distributed applications that are scalable, reliable, and secure.

2.5.2 Distribution Transparencies

Distribution transparencies are features that are designed to hide the complexities of working with
distributed systems from the user or developer. Some key distribution transparencies include:

• Access: This transparency masks differences in languages and data representation, allowing
different systems to communicate and exchange data with each other.
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• Failure: This transparency masks failures and enables fault tolerance through automated fail‑
over to other servers.

• Scalability: This transparencyprovides intelligent loadbalancingof requests to ensure that the
system can handle a large number of requests without becoming overloaded.

• Redundancy: This transparency transparently replicates data to ensure that it is available even
if one or more servers fail.

• Location: This transparency allows users to access services using logical, rather than physical,
names. This enables services to be moved or relocated without affecting the user experience.

• Migration: This transparency hides the true location of a service or object from clients. If the
location changes, the client will not notice.

• Persistence: This transparency automatically loads and stores data on demand to unload
server memory.

• Sharding: This transparency distributes storage requests across multiple backend systems to
ensure that the system can scale to handle a large volume of data.

• Transactions: This transparency makes requests ACID (Atomic, Consistent, Isolated, and
Durable), ensuring that they are executed correctly and consistently.

• Security: This transparency automatically checks for the required credentials or roles in re‑
quests, ensuring that only authorized users can access resources.

• Monitoring: This transparency creates central logs with correlation IDs that join request parts
across nodes, enabling administrators to track andmonitor the performance of the system.

2.5.3 Classification of Middleware

Middleware can be classified into several categories based on the type of service it provides and the
way it communicates with other components in a distributed system. Some common types of mid‑
dleware include:

• Socket‑based services: These are middleware systems that use sockets to communicate with
other components in a distributed system. Sockets are a low‑level communicationmechanism
that allows programs to send and receive data over a network.

• Remote procedure calls (RPCs): These are middleware systems that allow programs to make
calls to procedures or functions that are located on a remote machine, as if they were located
on the local machine.

• Object request brokers (ORBs): These are middleware systems that enable communication
between objects that are running on different machines. ORBs provide an interface that allows
objects to communicate with each other using a common protocol. Examples include CORBA
and RMI.

• Message‑oriented middleware (MOMs): These are middleware systems that enable commu‑
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nication between components by exchanging messages. MOMs are often used in event‑driven
systems and reactive systems, which respond to external events or stimuli.

• Web services: These are middleware systems that provide a way for different applications to
communicate over the web using standard protocols such as XML‑RPC, SOAP, and UDDI. Web
services are often used in service‑oriented architectures (SOA) and representational state trans‑
fer (REST) systems.

• Frameworks: These are middleware systems that provide a set of tools and libraries for build‑
ing distributed applications. Examples include Enterprise Java Beans (EJBs) and the Java 2
Enterprise Edition (J2EE).

• Peer‑to‑peer (P2P) systems: These are middleware systems that enable communication and
resource sharing among a group of computers or devices that are connected to each other. P2P
systems do not rely on a central server, but rather allow each device to communicate directly
with other devices in the network.

• Agent‑based systems: These are middleware systems that use software agents to communi‑
catewith other components in a distributed system. Agents are autonomous programs that are
designed to perform a specific task or function. Examples include Jini and Aglets.

• Tuple‑spaces and distributed blackboards: These are middleware systems that use a shared
memory space to enable communication and resource sharing among different components in
a distributed system.

• Warehouse‑computing architectures: These are middleware systems that are designed to
support the storage and processing of large volumes of data in a distributed environment, such
as a data center.

3 Theoretical Models of Distributed Systems

3.1 Overview

1. Message passing theoretical model
2. Distributed computing topologies
3. Client‑server systems, including critical points, architectures, processing and I/Omodels

3.2 Basic Principles

3.2.1 Synchronous vs. Asynchronous Systems

Synchronous and asynchronous systems are two types of distributed systems that differ in the way
that they handle communication and the passage of time.
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In a synchronous system, events are assumed to be delivered in a lockstep manner, with a fixed
delay between the occurrence of an event and its delivery. This means that events are delivered at
predetermined intervals, and the system can be designed to operate on the assumption that events
will be delivered at these intervals.

Asynchronous systemsdonot have a fixeddelay between the occurrence of an event and its delivery.
Events may be delivered at any time, and the system must be able to handle this uncertainty. Asyn‑
chronous systems typically requiremore complex distributed algorithms to ensure correct operation,
but they are generally easier to build andmaintain than synchronous systems.

In practice, most distributed systems are asynchronous, with additional mechanisms such as failure
detectors and randomization used to help ensure correct operation.

3.2.2 Properties of Message Protocols

Message protocol properties are characteristics that describe the desired behavior of amessage pass‑
ing protocol in a distributed system. These properties are used to ensure that the protocol operates
correctly and achieves its intended goals.

Some commonmessage protocol properties include:

• Correctness: This property refers to the invariant properties of the protocol, which are proper‑
ties that are expected to hold throughout all possible executions of the protocol. Ensuring the
correctness of a protocol is important for ensuring that the protocol achieves its intended goals.

• Liveness/termination: This property refers to the ability of the protocol to make progress in
the context of certain failures andwithin a bounded number of rounds. A protocol that satisfies
this property is said to be “lively” or “live”, while a protocol that does not satisfy this property is
said to be “deadlock”.

• Fairness: This property refers to the inability of any participant in the protocol to be “starved”
or denied access to resources. A protocol that satisfies this property is said to be “fair”, while a
protocol that does not satisfy this property is said to be “unfair”.

• Agreement: This property refers to the ability of all participants in the protocol to agree on a
specific decision or output value. Ensuring agreement is important for ensuring that the proto‑
col achieves a consistent result.

• Validity: This property refers to the ability of the protocol to output a result that is consistent
with the input value. A protocol that satisfies this property is said to be “valid”, while a protocol
that does not satisfy this property is said to be “invalid”.
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3.2.3 Complexity of Distributed Algorithms

• Time complexity refers to the amount of time it takes for an algorithm to complete. This is
oftenmeasured in terms of the time of the last event before all processes finish.

• Message complexity refers to the number of messages that need to be sent in order for the
algorithm to complete. This includes both the number of messages sent and the size of the
messages. The number of rounds needed for termination is also an important factor in themes‑
sage complexity of an algorithm, as it can have a significant impact on the overall scalability of
the protocol.

3.2.4 Failure Types

In distributed systems, there are several types of failures that can occur. These failures can have dif‑
ferent impacts on the system and can require different approaches to handling them.

Some common types of failures in distributed systems include:

• Crash failure: This type of failure occurswhen aprocess stopsworking and remains down. This
can be caused by a variety of issues, such as hardware or software problems.

• Connectivity failures: This type of failure occurs when there is a problem with the network
that connects the nodes in the system. This can cause “split brain” situations, where the sys‑
tem becomes divided into two separate networks, or node isolation, where a node becomes
disconnected from the rest of the system.

• Message loss: This typeof failureoccurswhen individualmessagesare lostduring transmission.
This can be caused by a variety of issues, such as network problems or hardware failures.

• Byzantine failures: This type of failure occurs when nodes in the system violate protocol as‑
sumptions and promises. This can include breaking promises due to disk or configuration fail‑
ures, or intentionally behaving in a way that goes against the protocol. Byzantine failures are
often considered to be themost difficult type of failure to handle in a distributed system, as they
can be difficult to detect and can have significant impacts on the system.

3.2.5 Distributed Computing Topologies

There are several types of distributed computing topologies that can be used to design distributed
systems. These topologies can have different characteristics and can be used to achieve different
goals, depending on the needs of the system.

Some common types of distributed computing topologies include:
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• Client/server systems: In this type of topology, clients initiate communication with servers,
which process the requests and send a response back to the client. This is the most common
type of distributed system and is often used for applications where clients need to request spe‑
cific information or services from servers.

• Hierarchical systems: In this type of topology, every node can act as both a client and a server,
but some nodes may play a special role, such as a domain name system (DNS) server. This
type of topology can reduce communication overhead and provide options for central control,
making it useful in certain types of systems.

• Totally distributed systems: In this type of topology, every node is both a client and a server.
This type of topology can be useful for systems where nodes need to communicate with each
other directly, rather than relying on a central server.

• Bus systems/pub‑sub: In this type of topology, every node listens for data and posts data in
response. This can be useful for event‑driven systems where nodes need to communicate with
each other asynchronously.

3.2.6 Queuing Theory: Kendall Notation M/M/m/ß/N/Q

The Kendall notation, also known as the Kendall notation for Markov chains, is a way of describing
the behavior of a queuing system. It is often used in the field of operations research to analyze the
performance of systems that have a finite number of servers and a finite queue size.

• ß: Population Size (limited or infinite)
• M,D,G: Probability distribution for arrivals
• N: Wait queue size (can be unlimited)
• Q: Service policy type (Fifo, shortest remaining time first etc)
• M,D,G: Probability distribution for service time
• m: Number of service channels

3.3 Queuing Theory

3.3.1 Generalized Queuing Theory Terms (Henry Liu)

• Server/Node: A combination of a wait queue and a processing element
• Initiator: The entity that initiates a service request
• Wait time: The time a request or initiator spends waiting in line for service
• Service time: The time it takes for the processing element to complete a request
• Arrival rate: The rate at which requests arrive for service
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• Utilization: The percentage of time the processing element spends servicing requests, as op‑
posed to being idle

• Queue length: The total number of requests waiting and being serviced
• Response time: The sum of the wait time and service time for a single visit to the processing
element

• Residence time: The total time spent by the processing element on a single transaction, if it is
visited multiple times

• Throughput: The rate at which requests are serviced, or how fast requests can be processed
without long wait times.

3.3.2 Little’s Law

• Little’s Law states that in a stable system, the long‑term average number of customers (L) is
equal to the long‑term average effective arrival rate (λ) multiplied by the average time a cus‑
tomer spends in the system (W).

• This can be expressed algebraically as L = λW.
• Little’s Law isused toanalyzeandunderstand thebehavior of systems that involvewaiting, such
as queues or lines. It can help to predict the average number of customers in a system, as well
as the average time they will spend waiting, given a certain arrival rate.

3.3.3 Hejunka

Hejunka is a Japanese term that refers to thepractice of leveling theproductionprocess by smoothing
out fluctuations in demand and task sizes. It is often used in leanmanufacturing and just‑in‑time (JIT)
production systems to improve the efficiency and flow of work through a system.

The goal of Hejunka is to create a steady, predictable flow of work through the system by reducing
variability in task sizes and demand. This can be achieved through a variety of methods, such as:

• Setting limits on the number of tasks or requests that can be processed at any given time
• Balancing the workload across different servers or processing elements
• Prioritizing tasks based on their importance or impact on the overall system
• Using techniques such as batching or grouping similar tasks together to reduce variability

By leveling the production process and reducing variability in task sizes, Hejunka can help to improve
the efficiency and flow of work through a system, and reduce the risk of bottlenecks or delays caused
by large differences in task size.
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3.3.4 Lessons Learned fromQueuing Theory

• Request numbers: Caching can be used to reduce the number of requests that need to be pro‑
cessed by storing frequently accessed data in memory, so that it can be quickly retrieved with‑
out the need to fetch it from a slower storage medium.

• Batching: The use of amulti‑get API can help to reduce the number of requests that need to be
processed by allowingmultiple requests to be bundled together and processed as a single unit.

• Task sizes and variability: Service level agreements (SLAs) can be used to define the accept‑
able level of variability in task sizes and completion times, and Hejunka is a technique that in‑
volves leveling the production process by smoothing out fluctuations in demand and task sizes.
This can help to reduce variability and improve the efficiency of the system.

3.3.5 Request Problem in Multi‑Tier Networks

In a multi‑tier network, the request problem refers to the fact that requests must travel through
multiple layers or tiers of servers in order to be processed, and each layer adds its own processing
time and potential delays to the overall response time.

The average response time in a multi‑tier network is therefore the sum of the trip average (the time
it takes for a request to travel from one server to the next) multiplied by the wait time (the time a
request spends waiting for a server to become available) at each layer, plus the sum of the service
demand (the time it takes for a server to process a request) at each layer.

It is important to note that in a multi‑tier network, all requests are synchronous and may be in con‑
tentionwith eachother, whichmeans thatwait times canoccur due to contention for server resources.
This can impact the overall efficiency of the system and may require the use of techniques such as
caching or batching to reduce the number of requests that need to be processed.

3.3.6 Task Size Problem in Multi‑Tier Networks

In a multi‑tier network, the task size problem refers to the fact that differences in task size can cause
delays and inefficiencies in the processing of requests.

In the caseof pipeline stalls betweennodes, largedifferences in task size can cause requests tobeheld
up at one node while waiting for the next node to become available, leading to delays in the overall
response time.
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3.3.7 Theories & Model vs. Reality

Whenapplyingqueuing theorymodels to real‑world systems, there are several factors that can impact
the accuracy and usefulness of the model. These include:

• Latency: Latency refers to the time it takes for a request to travel from one server to another
or for a task to be completed. Latency can vary based on a variety of factors, such as network
speed, server load, and thedistancebetween servers, and it can impact the accuracy of queuing
theory models.

• Blocking/locking/serialization in service units: In real‑world systems, servers may block or
lock requests while they are being processed, or may process requests serially rather than in
parallel. This can impact the accuracy of queuing theory models that assume parallel process‑
ing.

• Non‑random distributions and feedback effects: In real‑world systems, request and task ar‑
rival ratesmay not always follow a randomdistribution, and theremay be feedback effects that
impact the flow of work through the system. This can make it difficult to accurately model the
behavior of the system using queuing theory.

• Dead requests: In some cases, requests may be lost or dropped due to errors or other issues,
which can impact the accuracy of queuing theory models.

• Backpressure: In systems where the capacity of servers or processing elements is limited, it is
possible for requests to build up and create a backlog of work. This is known as backpressure,
and it can impact the accuracy of queuing theory models.

• Missing variables and coherence losses: Queuing theory models may not always include all
the relevant variables or may not accurately account for coherence losses, which can impact
their accuracy in predicting the behavior of real‑world systems.

3.4 Client/Server Architectures

3.4.1 Critical Points in Client/Server Systems

On the client side:

• Locating the server: The clientmust be able to locate the server in order to establish a connec‑
tion. This process can be impacted by factors such as network speed and latency.

• Authentication: The client may need to authenticate itself in order to access the server and its
resources.

• Sync/async: The client may be able to send requests synchronously or asynchronously, which
can impact the overall performance of the system.
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• Speed up/down: The clientmay be able to adjust the speed at which it sends requests in order
to optimize the performance of the system.

• Load balancing: The client may need to use load balancing techniques to distribute requests
evenly across multiple servers or processing elements.

• Queues: The client may need to use queues to manage requests and ensure that they are pro‑
cessed in an orderly manner.

On the server side:

• Manyclients: Theservermayneed tohandle requests frommanyclients simultaneously,which
can impact its performance and efficiency.

• Session state: The server may need to maintain session state information in order to track the
progress of individual requests.

• Authentication: The server may need to authenticate clients
• Authorization: The servermayneed toauthorize clients toaccess specific resourcesorperform
certain actions.

• Privacy: The server may need to ensure that client data is kept private and secure.
• Sync/async: The server may be able to process requests synchronously or asynchronously,
which can impact the overall performance of the system.

• Blocking: The servermay block requests while they are being processed, which can impact the
performance of the system.

• Single/multicore CPU intensive: The server may be able to use multiple cores or processors
to process requests in parallel, or it may be limited to processing requests serially on a single
core.

• Queues: The server may need to use queues to manage requests and ensure that they are pro‑
cessed in an orderly manner.

Between both: Bandwidth/latency; The bandwidth and latency of the network connection between
the client and the server can impact the performance and efficiency of the system.

3.4.2 Stateful vs Stateless Systems (The Stateful Server Problem)

The stateful server problem refers to the trade‑offs that must be considered when designing and im‑
plementing a server‑based system that maintains state information.

On the one hand, stateful servers have several advantages:

• Data locality: Stateful servers can store data locally, which can improve the performance of the
system by reducing the need to fetch data from external storage.
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• Consistency: Stateful servers can ensure that data is consistent and up‑to‑date, which can be
important in certain applications.

However, stateful servers also have some disadvantages:

• Availability: Stateful serversmay be less available than stateless servers, as theymay bemore
vulnerable to failures or downtime.

• Load balancing: Stateful servers may be more difficult to load balance than stateless servers,
as they must maintain state information for individual clients.

Stateless design, on the other hand, stores all data in external storage such as databases or caches,
which can make it easier to design and implement the system. However, in the event of failures, pro‑
gramming stateless systems can be more difficult, as all data must be retrieved from external stor‑
age.

3.4.3 Terminology for Client/Server Systems

• Host: A physical machine with n CPUs.
• Server: A process runningonahost that receivesmessages, performs computations, and sends
messages (not necessarily responses).

• Thread: An independent computation context within a process, which can be pre‑empted by
the kernel (kernel‑thread) or yield voluntarily (application‑level scheduling).

• Multi‑threading: The use of multiple threads within a single process context. This can be
achieved using kernel‑level threading (where the kernel switches between threads) or using
multiple kernel threads running in parallel on a multi‑core system.

• Multi‑channel: A thread that is able towatchmultiple channels using a single system call, such
as a select() call.

• Synchronous processing: A caller calls a function andwaits for its results, doing nothingwhile
waiting.

• Asynchronous processing: A caller calls a function and immediately continues executing its
owncode. The called function is eventually executed, anda callback function is called to inform
the caller about the completion.

• Parallel processing: The deterministic execution of independent code paths.
• Blocking: A thread calls a function that needs time to complete, such as fetching a resource
fromdisk. The thread cannot continue andblocks an execution corewhilewaiting for the result.
The thread is “context switched” and a new code path is loaded and executed by the core.

• Non‑blocking calls: A caller calls the non‑blocking version of a function. If the function canper‑
form immediately without delaying the caller, it will do so. If the function needed time to per‑
form its job, it will allow the caller to return immediately and inform it that it would be blocked.
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The caller can then decide to do something else and try again later (poll again).
• Synchronization: The control of access to shared data by multiple threads in order to prevent
data inconsistencies.

3.4.4 Overarching Client/Server Architectures

• Multi‑Tier System: This type of architecture involves splitting up the system into multiple lay‑
ers or tiers, each of which performs a specific set of functions. The tiers may include a presen‑
tation layer, a business logic layer, and a data storage layer, among others.

• Large fan‑out Architectures: This type of architecture involves a central component that re‑
ceives requests from many clients and distributes them to multiple servers or other resources.
This can allow the system to scale more easily and handle a large volume of requests.

• Pipeline (SEDA): This type of architecture involves breaking up the processing of a request into
multiple stages, each of which is handled by a separate component. The stages are connected
in a pipeline, with each stage processing the request and passing it on to the next stage.

• Offline Processing: This type of architecture involves processing requests and tasks in an of‑
fline or deferred manner, rather than in real‑time. This can be useful in situations where the
workload is too large to handle in real‑time, or where real‑time processing is not required.

3.5 Process and I/O Models

3.5.1 Different Process Models

• Single Thread/Single Core: This type of process model involves a single thread of execution
running on a single core. This can be efficient for certain types of workloads, but may not be
able to take full advantage of multiple cores or processors.

• Multi‑Thread/Single Core: This type of process model involves multiple threads of execution
running on a single core. This can allow the system to performmultiple tasks concurrently, but
may not be able to fully utilize the processing power of multiple cores or processors.

• Multi‑Thread/Multi‑Core: This type of process model involves multiple threads of execution
runningonmultiple cores or processors. This canallow the system to fully utilize theprocessing
power of multiple cores or processors, and can bemore efficient for certain types of workloads.

• Single Thread/Multi‑Process: This type of process model involves a single thread of execu‑
tion running within each of multiple processes. This can allow the system to take advantage of
multiple cores or processors, but may be less efficient than other models for certain types of
workloads.
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3.5.2 Questions for Process Models

• Can it use available cores/CPUs?
• What is the ideal number of threads?
• How does it deal with delays/(b)locking?
• How does it deal with slow requests/uploads?
• Is there observable non‑determinism aka race conditions?
• Is locking/synchronization needed?
• What is the overhead of context switches andmemory?

3.5.3 Amdahl’s Law

According to Amdahl’s Law, the maximum improvement in overall system performance that can be
achieved by improving a particular part of the system is limited by the fraction of time that the im‑
proved part of the system is used. In other words, if only a small portion of the system’s workload is
affected by the improvement, the overall improvement in performance will also be small.

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 1
(1−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛+ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

For example, if a particular part of a system is improved so that it runs twice as fast, but that part of the
system is only used 10% of the time, the overall improvement in system performance will be limited
to a 10% increase. On the other hand, if the improved part of the system is used 50% of the time, the
overall improvement in performance will be much larger, at 50%.

Amdahl’s Law is often used to understand the potential benefits and limitations of optimizing or im‑
proving specific parts of a system. It can be a useful tool for determining howmuch resources should
be invested in improving a particular part of the system, and for understanding the potential impact
of those improvements on overall system performance.

3.5.4 Different I/O Models

• Synchronous Blocking (Java before NIO/AIO): Prior to the introduction of the Java New I/O
(NIO) and Asynchronous I/O (AIO) APIs, Java had a different model for handling input/output
(I/O) operations. Thismodel involved using threads to block andwait for I/O operations to com‑
plete, which could be inefficient and consume a lot of system resources.

• Synchronous Non‑Blocking (Polling pattern): The polling pattern is a way of handling I/O op‑
erations in which a central component periodically checks for the completion of I/O operations.
This can be done by repeatedly calling a function that checks the status of the operation, or by
using a timer to trigger the check at regular intervals.
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• Asynchronous Blocking (Reactor pattern): The Reactor pattern is a way of handling I/O oper‑
ations inwhich a central component is notifiedwhen an I/O operation is completed, rather than
periodically checking for its completion. This can bemore efficient than the polling pattern, as
it allows the system to respond to I/O operations as soon as they are completed, rather than
waiting for a periodic check.

• Asynchronous Non‑Blocking (Proactor pattern): The Proactor pattern is similar to the Reac‑
tor pattern, but it is designed to handle high‑concurrency environments wheremany I/O opera‑
tions areoccurring simultaneously. It uses a combinationof asynchronous I/Oandevent‑driven
design to allow for efficient handling of multiple I/O operations at once.

3.5.5 Questions for I/O Models

• Can it deal with all kinds of input/output?
• How are synchronous channels integrated?
• How hard is programming?
• Can it be combined with multi‑cores?
• Scalability throughmulti‑processes?
• Race conditions possible?

4 Message Protocols

4.1 Overview

1. Message protocols

1. Delivery guarantees in point‑to‑point communication
2. Reliable broadcast
3. Request ordering and causality

2. Programming client‑server systems using sockets

4.2 Delivery Guarantees

4.2.1 The Role of Delivery Guarantees

Shoporder: Thescenariodescribed involvesanonline shop inwhichordersareplacedandprocessed.
The goal is to ensure that orders are delivered correctly and efficiently, regardless of any potential
issues that may arise.
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• TCP Communication properties: TCP (Transmission Control Protocol) is a networking proto‑
col that is used to establish and maintain communication between devices over a network. It
has several key properties that are relevant to the scenario described, including reliability, flow
control, and congestion control.

• At‑least‑once: The “at‑least‑once” delivery guarantee means that a message may be delivered
more than once, but it will always be delivered at least once. This can be useful in situations
where it is more important to ensure that a message is delivered, even if it may be duplicated,
than it is to prevent duplicates from occurring.

• At‑most‑once: The “at‑most‑once” delivery guarantee means that a message will be delivered
at most once. This can be useful in situations where it is more important to prevent duplicates
from occurring than it is to ensure that a message is always delivered.

• Exactly once: The “exactly once” delivery guarantee means that a message will be delivered
exactly once, with no duplicates. This can be more difficult to achieve than the other delivery
guarantees, as it requires additional complexity and overhead to ensure that duplicates are pre‑
vented.

• Messagecomplexity: Thenumberofmessages sent refers to the total numberofmessages that
are transmitted as part of the communicationprocess. In the scenario described, the number of
messages sent may affect the efficiency and reliability of the communication process, andmay
need to be taken into account when determining the appropriate delivery guarantee to use.

4.2.2 Why is TCP not Enough?

While TCP (Transmission Control Protocol) is a widely used networking protocol that provides a reli‑
able communication channel between devices, it is not always sufficient on its own to ensure proper
behavior in all situations. Here are some reasons why TCPmay not be enough:

• Lost messages retransmitted: TCP includes mechanisms for retransmitting lost messages,
which can help to improve the reliability of communication. However, if messages are
frequently lost or the network is particularly unreliable, the overhead of retransmitting lost
messages may become a burden on the system.

• Re‑sequencing of out of order messages: TCP includes mechanisms for reordering out‑of‑
ordermessages,whichcanhelp toensure thatmessagesaredelivered in the correctorder. How‑
ever, if messages are frequently delivered out of order, this can be inefficient and may cause
issues with the overall communication process.

• Sender choke back (flow control): TCP includes flow control mechanisms that allow the
sender to adjust its rate of transmission based on the capacity of the receiver. However, if
the sender is sending messages too quickly, this can lead to congestion on the network and
reduced performance.
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• No message boundary protection: TCP does not provide any protection for message bound‑
aries,whichmeans thatmessagesmaybebrokenupor combinedduring transmission. This can
make it difficult to ensure thatmessagesaredelivered in their entirety andcancause issueswith
the overall communication process.

• Timeout problem: TCP includes mechanisms for detecting and handling connection failures,
but these mechanisms may not be sufficient in all situations. For example, if a connection is
lost due to a timeout, it may take some time to detect and recover from the failure, which can
lead to delays and disruptions in the communication process.

To address these andother issues, itmaybenecessary to use additional protocols or techniques, such
asmessage‑orientedmiddleware or application‑level protocols, to ensure proper behavior in case of
connection failures and to provide additional features and guarantees for message delivery.

4.2.3 Different Levels of Timeouts

• Business‑Process‑Timeout: This timeout is set at the business process level and is used to
ensure that a business process does not get stuck or take too long to complete. This timeout
may be triggered if a particular task or operationwithin the process takes longer than expected
to complete, or if the process as a whole takes too long to finish.

• RPC‑Timeout (orderprogress): This timeout is set at the level of remoteprocedure calls (RPCs)
and is used to ensure that RPCs do not get stuck or take too long to complete. This timeoutmay
be triggered if an RPC takes longer than expected to complete, or if the progress of an RPC is not
being monitored properly.

• TCP‑Timeout (reliable channel): This timeout is set at the TCP (Transmission Control Proto‑
col) level and is used to ensure that the reliable communication channel provided by TCP is
functioning properly. This timeout may be triggered if a connection is lost or if the channel
becomes congested or otherwise unstable.

4.2.4 Delivery Guarantees for RPCs

• Best effort: The “best effort” delivery guarantee means that no specific guarantees are made
about the delivery of requests or responses. Thismeans that requestsmay be lost or responses
may not be received, and there is no mechanism in place to ensure that this does not happen.

• At least once: The “at least once” delivery guarantee means that a request may be delivered
more than once, but it will always be delivered at least once. This can be useful in situations
where it is more important to ensure that a request is delivered, even if it may be duplicated,
than it is to prevent duplicates from occurring.
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• At most once: The “at most once” delivery guarantee means that a request will be delivered
at most once. This can be useful in situations where it is more important to prevent duplicates
from occurring than it is to ensure that a request is always delivered.

• Once and only once/exactly once: The “once and only once” or “exactly once” delivery guar‑
anteemeans that a request will be delivered exactly once, with no duplicates. This can bemore
difficult to achieve than the other delivery guarantees, as it requires additional complexity and
overhead to ensure that duplicates are prevented.

4.3 Idempotency

4.3.1 Overview

Idempotency is a property of operations or requests that ensures that they can be safely repeated
without changing the result of the operation. In other words, if an operation is idempotent, it will
have the same result whether it is performed once or multiple times.

• The first request needs to be idempotent: In a sequence of requests, it is important that the first
request is idempotent. This ensures that the first request can be safely repeated if it fails or is
lost, without affecting the overall result of the operation.

• The last request can be only best effort
• Messages may be reordered

4.3.2 Server State and Idempotency

Idempotency is an important property to consider when designing operations or requests that may
be repeated or delivered multiple times, as it can help to ensure that the operation or request is able
to be safely repeated without affecting the overall result. Here are some additional considerations
related to idempotency and server state:

• No need to remember a request and its result: If an operation or request is idempotent, the
server does not need to remember the request or its result. This can be useful in situations
where the server’s storage is limited or unreliable, as it means that the server does not need to
maintain a record of all previous requests and their results.

• Server can lose its storage: If the server’s storage is lost or becomes unavailable, it should
not affect the overall result of the operation or request, as long as the operation or request is
idempotent. This can help to ensure that the operation or request is able to be safely repeated
even if the server’s storage is lost.

• Concurrent updates might be consistent without concurrency control: If an operation or
request is idempotent, it is possible that concurrentupdates to the samedatamaybeconsistent
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without the need for concurrency control mechanisms such as locks or transactions. This can
help to improve the efficiency and performance of the system.

4.3.3 Implementing Delivery Guarantees for Idempotent Requests

• “At least once” implementation for idempotent requests: For idempotent requests, the “at
least once” delivery guarantee can be implemented by simply sending an acknowledgement
(ack) to the client after the request has been received. This approach does not require any up‑
dates to the server state, and is suitable for requests that do not have any critical side effects.

• “At most once” implementation for nonidempotent requests: For nonidempotent requests,
the “at most once” delivery guarantee can be implemented by storing a response on the server
until the client confirms that it has been received. This approach requires the server tomaintain
state for each response, and may involve adding a request number to each request to help the
server detect and discard duplicate requests.

• “Exactly once” implementation: The “exactly once” delivery guarantee is not possible to
achieve in asynchronous systems with network failures. However, it can be approximated
using techniques such as two‑phase commit and epoch numbers, which allow the client and
server to coordinate their actions and ensure that they do not forget their decisions. This
approach may involve maintaining an atomic log on both the client and server, and storing
responses on the server until they are confirmed by the client

4.3.4 Repeating Non‑Idempotent Operations

If an operation is not idempotent, it means that it cannot be safely repeated multiple times and is
likely to have unintended side effects. In this case, there are several measures that can be taken to
ensure reliable communication:

• Useamessage ID to filter for duplicate sends: By includingauniquemessage ID in each request,
the server can filter out duplicates and only execute the request once.

• Keep a history list of request execution results on the server: If the reply to a request is lost,
the server can retransmit the result from its history list. This helps to ensure that the client
receives the correct result even if the initial reply was lost.

• Lease resources on the server: In some cases, it may be necessary to keep state on the server
in order to facilitate communication. For example, a client may “lease” resources on the server
for a specific period of time. This can help to ensure that resources are used efficiently and
released when they are no longer needed.

It is important to carefully manage state on the server in order to avoid overloading the system with
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old replies. It may be necessary to set limits on how long to store old replies and when to discard
them.

4.4 Order

4.4.1 Request Order in Multi‑Point‑Protocols

• No request order fromone sender: In amulti‑point protocol, there is no guaranteed order for
requests sent by a single sender. This means that requests may be received and processed in a
different order than they were sent, and the sender should be prepared to handle this possibil‑
ity.

• Norequestorderbetweendifferent senders: In amulti‑pointprotocol, there isnoguaranteed
order for requests sent by different senders. This means that requests from different senders
may be received and processed in a different order than theywere sent, and the senders should
be prepared to handle this possibility.

• No request order between independent requests of different senders: In a multi‑point pro‑
tocol, there is no guaranteed order for independent requests sent by different senders. This
means that independent requests from different senders may be received and processed in a
different order than theywere sent, and the senders should be prepared to handle this possibil‑
ity.

4.4.2 Request Ordering with Multiple Nodes

In a multi‑node system, it may be necessary to use a reliable broadcast protocol to ensure that re‑
quests are processed in the desired order. Here are some examples of protocols that can be used for
request ordering with multiple nodes:

• Reliable Broadcast: Reliable broadcast is a protocol that ensures that a message is delivered
to all nodes in the system, and that it is delivered in the same order to all nodes. This can help
to ensure that requests are processed in the correct order, even if they are sent from different
nodes or if there are delays or other issues with the network.

• FIFOCast: FIFO cast is a protocol that ensures thatmessages are delivered in the order inwhich
they were sent, with the first message sent being the first one to be delivered. This can help
to ensure that requests are processed in the correct order, even if they are sent from different
nodes or if there are delays or other issues with the network. This can still lead to causal incon‑
sistencies!

• Causal Cast: Causal cast is a protocol that ensures that messages are delivered in a causally
consistent order, based on the dependencies between the messages. This can help to ensure
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that requests are processed in the correct order, even if they are sent from different nodes or if
there are delays or other issues with the network.

• Absolutely Ordered Casts: Absolutely ordered casts is a protocol that ensures that messages
are delivered in a totally ordered sequence, with no uncertainty about the order in which the
messages were sent. This can help to ensure that requests are processed in the correct order,
even if they are sent from different nodes or if there are delays or other issues with the network.

4.4.3 Implementing Causal Ordered Broadcasts

• Piggybacking previous messages: One solution for implementing causal ordered broadcasts
is to piggyback every message sent with the previous messages. This means that when a mes‑
sage is sent, it is accompanied by the previous messages that it depends on. This can help to
ensure that processes that may have missed a message can learn about it with the next incom‑
ing message and then deliver it correctly.

• Sending event history with every message: Another solution for implementing causal or‑
dered broadcasts is to send the event history with every message. This can be done using tech‑
niques such as vector clocks, which are used to track the dependencies between events in a
distributed system. With this approach, messages are not delivered until the order is correct.
This can help to ensure that messages are delivered in the correct order, even if there are de‑
lays or other issues with the network.

4.4.4 Implementing Absolutely Ordered Casts

• All nodes sendmessages to every other node: One solution for implementing atomic broad‑
casts is for all nodes to send theirmessages to every other node in the system. This ensures that
all nodes have a complete set of messages, which can be used to determine the total order of
the messages.

• All nodes receive messages, but wait with delivery: After receiving all of the messages, all
nodes can wait with delivery until the total order of the messages has been determined.

• One node is selected to organize the total order: To determine the total order of the mes‑
sages, one node can be selected to organize the messages into a total order. This node can use
a variety of techniques, such as vector clocks or Lamport timestamps, to determine the order
of the messages.

• The node sends the total order to all nodes: Once the total order has been determined, the
node can send the total order to all other nodes in the system.

• All nodes receive the total order and deliver their messages: Finally, all nodes can receive
the total order and deliver their messages according to the determined order.
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There are however disadvantages with these implementations:

• Mayhavehighoverhead: This solutionmayhavehighoverhead, as it requiresall nodes to send
and receivemessages fromeveryother node in the system. This canbeparticularly problematic
in large systems with many nodes, as it may result in many messages being transmitted and
processed.

• Mayhavehigh latency: This solutionmayalsohavehigh latency, as it requires all nodes towait
for the total order to be determined before delivering their messages. This can be particularly
problematic in systems where low latency is critical.

4.5 Sockets

4.5.1 Properties of Sockets

Sockets are a programming interface that enables communication between networked computers.
They are used to send and receive data over a network connection using either TCP (Transmission
Control Protocol) or UDP (User Datagram Protocol) connections.

Socket properties include:

• Using either TCP or UDP connections: Sockets can use either TCP or UDP connections to com‑
municate with other computers over a network. TCP provides a reliable, connection‑oriented
communication channel, while UDP provides a connectionless, unreliable communication
channel.

• Serving as a programming interface: Sockets provide a programming interface that enables
applications to send and receive data over a network connection. They are typically used in
conjunction with other programming constructs, such as threads or event loops, to enable con‑
current communication and data processing.

• A specification of “Host”, “Port”, “Connection type”: Sockets are identified by a combina‑
tion of a host, port, and connection type. The host specifies the address of the computer on
which the socket is running, the port specifies a specific communication endpoint on the host,
and the connection type specifies whether the socket is using TCP or UDP.

• A unique address of a channel endpoint: Each socket is assigned a unique address that iden‑
tifies it as a communication endpoint. This address is used to identify the socket when sending
or receiving data over the network.
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4.5.2 Berkeley Sockets

Berkeley sockets provide a set of primitives or functions that can be used to create, manage, and
manipulate network connections and communication channels.

Here is a brief description of the meaning of each of the Berkeley Sockets primitives:

• Socket: The socket primitive creates a new communication endpoint, or socket, that can be
used to send and receive data over a network connection.

• Bind: The bind primitive attaches a local address to a socket, specifying the address and port
on which the socket will listen for incoming connections or data.

• Listen: The listen primitive announces the willingness of a socket to accept incoming connec‑
tions from other hosts.

• Accept: The accept primitive blocks the caller until a connection request arrives at the socket.
When a connection request is received, it creates a new socket for the connection and returns a
reference to the new socket.

• Connect: The connect primitive actively attempts to establish a connection to a remote host by
sending a connection request to the remote host.

• Send: The send primitive sends some data over the connection associated with a socket.
• Receive: The receiveprimitive receives somedataover the connectionassociatedwith a socket.
• Close: The close primitive releases the connection associated with a socket, allowing it to be
used for other purposes.

4.5.3 Server Side Processing using Processes

Server‑side processing using processes is amodel for handling incoming requests in a networked sys‑
tem. It involves the following steps:

1. Server: The server listens on a specified port, waiting for incoming connection requests.
2. Client: A client connects to the serveronanarbitraryport andestablishesa connectionbetween

the client and the server.
3. Server: The server accepts the connection request and spawns a new process to handle the

request. The process is assigned to the same port as the original connection, and the server
goes back to listening for new connection requests.

This model allows the server to scale to some degree, as it can handlemultiple requests concurrently
by spawning newprocesses to handle each request. However, process creation canbe expensive, and
there may be limits on the number of processes that can be created on a given system. An example
of this model is traditional CGI processing in a web server, where a new process is spawned to handle
each incoming request.

Felicitas Pojtinger 43



Uni Distributed Systems Summary 2023‑02‑05

4.5.4 Server Side Processing using Threads

Server‑sideprocessingusing threads is amodel for handling incoming requests inanetworkedsystem
that is similar to the process‑based model, but uses threads instead of processes to handle requests.
It involves the following steps:

1. Server: The server listens on a specified port, waiting for incoming connection requests.
2. Client: A client connects to the serveronanarbitraryport andestablishesa connectionbetween

the client and the server.
3. Server: The server accepts the connection request and spawns a new thread to handle the re‑

quest. The thread is assigned to the same port as the original connection, and the server goes
back to listening for new connection requests.

Thismodel allows the server to scalewell, as it canhandlemultiple requests concurrentlyby spawning
new threads to handle each request. Thread creation is less expensive than process creation, and it is
possible to create a larger number of threads on a given system. An example of this model is servlet
request processing in a servlet engine, also known as a “web container”.

In a threaded server, it is important to ensure that the functions that are used to handle incoming
requests are re‑entrant, or able to be safely called concurrently by multiple threads. This is because
multiple threads may be executing the same function simultaneously, and the functionmust be able
to handle this without causing problems.

To ensure that functions are re‑entrant, it is important to avoid using unprotected global variables,
as these can be modified concurrently by multiple threads, leading to potential race conditions and
other problems. Instead, state should be kept on the stack, with each thread having its own copy
of the state. This ensures that each thread has its own private version of the state, and can operate
independently of other threads.

4.5.5 Design Considerations for Socket‑Based Services

• Message formats: The message formats that will be exchanged between clients and servers
shouldbe carefully designed to ensure that data canbe transmitted and received correctly. This
includes ensuring that data is represented consistently on different hardware platforms and
avoiding problems caused by different data representations.

• Protocol design: The protocol that will be used by clients and servers to communicate should
also be carefully designed. This includes deciding whether clients will wait for answers from
the server (synchronous communication) or whether communication will be asynchronous,
whether the server can call back to the client, whether the connection will be permanent or
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closed after each request, whether the server will hold client‑related state (e.g. a session), and
whether the server will allow concurrent requests.

4.5.6 Stateless vs. Stateful Socket‑Based Services

A stateless service is one in which the server does not store any information about previous requests
or maintain any state between requests. This can have several advantages, including:

• Scaling extremely well: Because the server does not maintain any state between requests, it
can handle a large number of requests concurrentlywithout running out of resources or becom‑
ing overloaded.

• Making denial of service attacks harder: Because the server does not maintain any state be‑
tween requests, it is more resistant to denial of service attacks, as attackers cannot exhaust
resources by sending a large number of requests that require the server to store state.

• Forcing new authentication and authorization per request: A stateless service can require
clients to authenticate and authorize each request separately, improving security by requiring
clients to prove their identity and permissions for each request; this can however also be a dis‑
advantage, as it requires a significant overhead to transfer the authn credentials each time.

On the other hand, a stateful service is one in which the server stores information about previous
requests andmaintains state between requests. This can have several advantages, including:

• Allowing transactions and delivery guarantees: Because the servermaintains state between
requests, it is possible to use transactions and guarantee delivery of requests.

• Enabling more complex interactions: A stateful service can support more complex interac‑
tions between clients and servers, as it allows the server to track the state of the interaction
and respond appropriately.

However, stateful services can also have some drawbacks, including:

• Risk of resource exhaustion: Because the server maintains state between requests, it is pos‑
sible for the server to run out of resources, such as sockets, if it receives many requests that
require it to store state.

• Need for reliable hardware and networks: In order to function correctly, stateful services typ‑
ically require reliable hardware and networks, as they rely on the server being able tomaintain
state between requests. If the server or network experiences failures, this can disrupt the state‑
ful interaction.
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4.5.7 TCP SYN Flooding

TCP SYN flooding is a type of denial of service (DoS) attack that exploits a weakness in the TCP con‑
nection establishment process. In a normal TCP connection, the client sends a SYN (synchronize)
packet to the server to initiate the connection, and the server responds with a SYN‑ACK (synchronize‑
acknowledge) packet to confirm that the connection can be established. The client then sends an
ACK (acknowledge) packet to complete the three‑way handshake and establish the connection.

In a TCP SYN flooding attack, the attacker sends a large number of SYN packets to the server, either
from a single machine or from a network of compromised machines. The server responds to each
SYN packet with a SYN‑ACK packet, but the client never completes the three‑way handshake by
sending an ACK packet. As a result, the server is left waiting for the ACK packet, and the resources
used to track the half‑open connections can be exhausted, preventing the server from accepting any
new connections.

TCP SYN flooding attacks can bemitigated by implementing SYN cookies, which use cryptographic
techniques to allow the server to track half‑open connections without using any resources. Other
measures, such as rate limiting and filtering of incoming SYN packets, can also help to prevent or
mitigate the effects of TCP SYN flooding attacks.

4.5.8 Writing a Socket Client & Server

For the server:

1. Define the port number of the service: The server should specify the port number onwhich it
will listen for incoming connections. For example, the HTTP server typically listens on port 80.

2. Allocate a server socket: The server creates a server socket and binds it to the specified port
number. The server socket then listens for new connections.

3. Accept an incoming connection: When a client attempts to connect to the server, the server
socket accepts the connection and creates a new socket for the client connection.

4. Get the input channel: The server reads the input channel from the socket to receivemessages
from the client.

5. Parse the client message: The server parses the client message to understand the request
being made.

6. Get the output channel: The server gets the output channel from the socket, which is where it
will send responses to the client.

7. Do request processing: The server processes the client request, either by handling it directly
or by creating a new thread to handle it.

8. Create a response message: The server creates a response message, such as an HTTP
response, to send back to the client.
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9. Write the message to the output channel: The server writes the response message to the
output channel, which sends it back to the client.

10. Read newmessages or close the connection: The server can either read newmessages from
the client’s input channel or close the connection if it is no longer needed.

For the client:

1. Define the hostname and port number of the server host
2. Allocate a socketwith the host and port parameters
3. Obtain the input channel (for messages from the server) and output channel (for messages to

the server) from the socket
4. Create amessage to send to the server, such as “GET /somefile.html HTTP/1.0”
5. Write themessage to the output channel to send it to the server
6. Read the response from the input channel and display it

For amultithreaded client:

• One thread reads from the console and writes to the output channel
• The other thread reads from the input channel and displays or writes the server messages

4.5.9 Distribution Transparency with Sockets

• Invocation: Server‑side functions cannot be called directly from the client side, andmessages
must be defined and sent using socket operations

• Location/relocation/migration: If the service moves, the client connection will be broken
• Replication/concurrency: Not supported
• Failure: Not supported
• Persistence: Not supported

4.5.10 Infrastructure of Client‑Server Systems

1. Directory: Helps locate the server
2. Proxy: Checks client authorization and routes requests through the firewall
3. Firewall: Allows outgoing calls only
4. Reverse proxy: Caches results, ends SSL sessions, and authenticates clients
5. Authentication server: Stores client data and authorizes clients
6. Load balancer: Distributes requests across servers
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5 Remote Procedure Calls

5.1 Overview

1. Call versions: local, inter‑process, and remote
2. Mechanics of remote calls:

1. Marshaling/serialization
2. Data representation
3. Message structure and schema evolution
4. Interface definition language
5. Tooling: generators

3. Cross‑language call infrastructures: Thrift and gRPC

5.2 Types of RPCs

5.2.1 Call Versions

1. Local calls: made within a single process and do not require network communication
2. Inter‑process calls: Made between processes on the same machine and can be implemented

using a variety of mechanisms, such as sharedmemory or pipes
3. Remote calls: Made between processes on different machines and typically require network

communication

5.2.2 Remote Calls vs. Remote Messages

• Remotecalls: Hide the remote service calls behindaprogramming language call andare tightly
coupled with synchronous processing

• Remote messages: Use a message‑based middleware and create a new concept of a message
and its delivery semantics; a message system can simulate a call‑based system, but not vice
versa

5.2.3 In‑Process (Local) Calls

• No special middleware is required for calls made within the same programming language
• Calls into the OS are not inter‑process calls
• Special attention is required for cross‑language callsmadewithin a single process, such as calls
to native code in Java
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• In‑process calls are fast because they do not require network communication or context
switches between processes.

• Have “exactly once” semantics, meaning that they will be executed only once and will not be
retried if they fail.

• Are type‑safe and link‑safe, meaning that they are checked for type compatibility at compile
time and will not result in linker errors. However, theymay have issues with dynamic loading if
the called code is not available at runtime.

• Can be either sequential or concurrent, depending on the design of the application. Concur‑
rent in‑process calls can be implemented using threads or other concurrency mechanisms.

• Operatewithin a single name and address space, which means that they can access all vari‑
ables and functions within the process without requiring additional addressing or mapping.

• Are independent of byte ordering, which means that they can be used on any machine with
any endianness without requiring additional conversions.

• Can be controlled in theirmemory usage, such as through garbage collection, which can help
prevent memory leaks and improve the performance and stability of the application.

• Can use value or reference parameters, depending on the needs of the application. Value
parameters are copied when passed to a function, while reference parameters are passed by
address and can bemodified within the called function.

• Are transparent programming language calls and not explicit messages, which means that
they appear to the programmer as regular function calls and do not require the creation and
handling of explicit messages.

5.2.4 Inter‑Process Calls (IPC)

• Local inter‑process calls are faster than remote calls, but not as fast as in‑process calls
• Do not have “exactly once” semantics
• Are type‑safe and link‑safe if both processes use the same static libraries, butmay have issues
with dynamic loading

• Can be either sequential or concurrent, but the caller no longer controls the execution; the
receiver must protect itself from concurrent access

• Cannot assume a single name and address space and require additional addressing or map‑
ping

• Are still independent of byte ordering
• Require cross‑process garbage collection to managememory usage
• Can only use value parameters, as the target process cannot access memory in the calling
process

• Are not real programming language “calls” and require the creation of messages to simulate
the missing features
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• Inter‑process communication is not local and introduces latency, memory barriers, and the
possibility of process failures

The good news is that inter‑process communication occurs on the same hardware and uses the same
languageat the sender and receiver,which canreducesecurity issuesandensure that a systemcrash
affects both sender and receiver (fail‑stop semantics)

5.2.5 Remote Procedure Calls (RPC)

• Remote procedure calls (RPCs) are much slower than local calls and do not have delivery
guaranteeswithout a protocol

• May have versionmismatches that show up at runtime
• Are concurrent and the caller no longer controls the execution; the callee must protect itself
from concurrent access

• Cannot assume a single name and address space and require additional addressing or map‑
ping

• Are affected by byte ordering
• May require network garbage collection if they are stateful
• May involve cross‑language calls
• Can only use value parameters, as the target process cannot access memory in the calling
process

• Are not real programming language “calls” and require the creation ofmessages to simulate
the missing features

• Often stateless

5.3 Implementing Remote Calls

5.3.1 Overview

• Marshaling/Serialization: Process of converting program data into a format that can be trans‑
mitted over a network

• External Data‑Representation: Standardized format for representing binary data
• InterfaceDefinition: Defines a service, a set of related functions that can be accessed remotely
• Message Structure and Evolution: Way in which data is organized and transmitted between
systems

• Compilers: Generate code (stub/skeleton or proxy) to facilitate communication between sys‑
tems

• Request/Reply Protocol: Handles errors that may occur during the remote call process
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• Process/I/O Layer: Responsible for managing threads and input/output operations

5.3.2 Marshaling/Serialization

Marshaling/serialization is the process of converting parameters (basic types or objects) into a com‑
mon transfer format (message) that canbe transmittedover a network. At the target site, themessage
is transformed back into the original types or objects. There are several different approaches to mar‑
shaling/serialization, each with its own trade‑offs:

• Language‑dependent output format: This approach uses a proprietary format that is specific
to a particular programming language. Itmay be slower and have limitations in expressiveness,
but it can bemore efficient in terms of the size of the message.

• Language‑independent output format: This approach uses a standardized format that is not
tied to any particular programming language. It may bemore verbose and result in larger mes‑
sages, but it is more flexible and can be used with a wider range of languages.

• Binary schema‑based: In this approach, the sender and receiver both have a shared under‑
standing of the structure of the message, including the types and variables contained within it.
Function names are replaced with numbers and variable data is encoded to save space. This
approach is efficient in terms of message size, but it can be inflexible.

• Binary self‑describing: In this approach, the message contains information about its own
structure, including the types and variables contained within it. This allows for more flexibility,
but it requires the involved languages to have some level of flexibility in their capabilities.

• Textual, self‑describing: This approach uses an XML representation of the types or objects
contained in the message. It is flexible, but it can be verbose and result in larger messages.

• Textual with schema for reader/writer: This approach uses a schema to define the structure
of themessage, which allows for advanced schema evolution and dynamic serializations. It can
be flexible, but it may result in larger messages.

Serialization to text is a method of converting data into a human‑readable format, typically using a
markup language such as XML. This approach can be less efficient in terms of the size of the result‑
ing message, as it is generally less compact than binary serialization. It is important to be aware of
language limits, such as the range of integers and floating‑point numbers that can be represented in
JavaScript, when using this approach. XML is a popular choice for language‑independent encoding
because it is widely supported and can represent a wide range of data types.

Serialization to binary is a method of converting data into a compact, machine‑readable format.
It requires a schema, which defines the structure of the message and the types of data it contains.
This approach is generally more efficient in terms of the size of the resulting message, but it is not as
flexible as text‑based serialization because it requires a shared understanding of the schemabetween

Felicitas Pojtinger 51



Uni Distributed Systems Summary 2023‑02‑05

the sender and receiver. Binary serialization can also be used for language‑independent encoding.

5.3.3 Schema Evolution

When data or functions change, it is important to consider how different versions of a system will
coexist and communicate with each other.

Forward compatibility means that older receivers should be able to understand messages from
newer senders. This allows newer versions of a system to be deployed without causing problems for
existing clients.

Backward compatibilitymeans that newer receivers should be able to understand messages from
older senders. This allows older versions of a system to continue functioning even after newer ver‑
sions have been introduced.

5.3.4 Keeping Compatibility when Evolving a Schema

For JSON

Forwardcompatibilitymeans thatolder versionsof a systemshouldbeable tounderstandmessages
from newer versions. Examples of changes that can be made to a system in a way that maintains
forward compatibility:

• Adding a new required field: Older readers will simply ignore the new field, so they will be
compatible with newer versions.

• Narrowing a numerical type (e.g. float to int): Older readers will assume ints, which are a
subset of floats, so they will be compatible with the newer int type.

Backward compatibilitymeans that newer versions of a system should be able to understand mes‑
sages fromolder versions. Examples of changes that can bemade to a system in away thatmaintains
backward compatibility:

• Adding a fieldwith a default value: Older writers will be unaware of the new field, so theywill
use the default value instead.

• Adding an optional field: Older writers will be unaware of the new field, so they will use the
default value (usually null) instead.

• Widening a numerical type (e.g. int to float): Older writers will always use ints, which are a
subset of floats, so they will be compatible with the newer float type.

• Removing a field: Newer readers will ignore whatever was previously written in the field that
was removed, so they will be compatible with older versions.
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Full compatibilitymeans that a change canbemade to a systemwithout breaking compatibilitywith
either older or newer versions. Examples of changes that can bemade to a system in away thatmain‑
tains full compatibility include:

• Adding a fieldwith a default value
• Adding an optional field

Incompatibilitymeans that a change to a systemwill break compatibility with either older or newer
versions. Examples of changes that can break compatibility include:

• Renaming a field
• Changing the type of a field (other than the numeric conversions mentioned above)

5.3.5 Stubs and Skeletons

Stubs and skeletons are code that is used to facilitate communication between different systems, typ‑
ically in the context of remote procedure calls (RPCs). Stubs are used by clients to initiate a remote
call, while skeletons are used by servers to receive and process the remote call.

There are several ways to generate stubs and skeletons, including:

• – Generating them in advance from an interface definition language (IDL) file: In this
approach, the stubs and skeletons are generated from an IDL file, which defines the in‑
terfaces and data structures that are used for communication. The IDL file is used as a
blueprint for generating the code.

• Generating them on demand from a class file: In this approach, the stubs and skeletons are
generated from a class file, which defines the classes and methods that are used for communi‑
cation. The class file is used as a blueprint for generating the code.

• Distributing them in advance to all clients and servers: In this approach, the stubs and skele‑
tons are generated in advance and distributed to all the clients and servers that will be using
them. This allows the systems to be set up and configured in advance, rather than on demand.

• Downloading them on demand: In this approach, the stubs and skeletons are downloaded
by the clients and servers as needed, rather than being distributed in advance. This allows for
more flexibility and can bemore efficient in terms of bandwidth usage.

5.3.6 Finding an RPC Server

In a remote procedure call (RPC) system, a client needs to be able to locate the server in order to
initiate a remote call.
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Service:

1. Start listening at port X: The server starts listening for incoming requests on a specific port.
2. Tell portmapper about program, version, and port: The server registers itself with the

portmapper, which is a service that keeps track of the programs and ports that are available on
the system. The portmapper is typically a separate daemon that runs on the system.

Client:

1. Ask portmapper for program, version: The client sends a request to the portmapper asking
for the port number of the desired program and version.

2. The portmapper responds with the port number where the desired program and version can
be found.

3. Send procedure call to service: The client sends the procedure call to the server on the speci‑
fied port.

This process is knownas “binding,” and there are severalways to handle it, including using inetd, DCE,
or a Unix portmapper.

5.3.7 Factors to Consider when Choosing an IDL

• Are data types easily expressed using the IDL? It is important to choose an IDL that can easily
represent the types of data that will be used in the RPC system.

• Is hard or soft versioning used? Hard versioning means that the IDL is strictly enforced, and
any changes to the IDL will break compatibility. Soft versioning means that the IDL is more
flexible and can be changed without breaking compatibility.

• Are structures self‑describing? Self‑describing structures contain enough information to be
understoodby any system, even if it is not familiarwith the specific structure. This canbe useful
for maintaining compatibility between different versions of a system.

• Is it possible to change the structures later and keep backward compatibility? It is impor‑
tant to choose an IDL that allows for changes to be made to the structures in a way that main‑
tains backward compatibility with older versions of the system.

• Is it possible to change processing of structures later and keep forward compatibility? It is
important to choose an IDL that allows for changes to be made to the processing of structures
in a way that maintains forward compatibility with newer versions of the system.

• Are there bindings for all languages in use at my company? It is important to choose an IDL
that has bindings for all the languages that will be used in the RPC system.

• Do I need different encodings (binary/textual)? It is important to consider whether binary
or textual encoding will be needed for the RPC system, and choose an IDL that supports the
desired encoding.
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• Doeschangingserializationrequirea recompile? It is important toconsiderwhether changes
to the serialization will require a recompile, as this can affect the flexibility and ease of mainte‑
nance of the system.

• Can I extend/change the runtime system (e.g. add trace statements)? It is important to
choose an IDL that allows for changes and extensions to the runtime system, such as the ability
to add trace statements.

5.3.8 Popular IDLs for RPCs

• CORBA (Common Object Request Broker Architecture): CORBA is a standard for interoperat‑
ing between different programming languages and platforms. It defines an interface definition
language (IDL) that can be used to describe the interfaces and data structures that are used for
communication, as well as a runtime system for executing the RPCs.

• MicrosoftCLR (CommonLanguageRuntime): TheCLR is a runtimeenvironment for executing
.NET programs. It includes a cross‑language call infrastructure that allows programs written in
different .NET languages to communicate with each other.

• Thrift: Thrift is a cross‑platform RPC framework that allows different programming languages
to communicate with each other. It includes an IDL for defining the interfaces and data struc‑
tures that are used for communication, as well as code generators for generating the stubs and
skeletons that are used to initiate and process the RPCs.

• gRPC: gRPC is ahigh‑performanceRPC framework thatusesHTTP/2as theunderlying transport.
It includes an IDL for defining the interfaces and data structures that are used for communica‑
tion, as well as code generators for generating the stubs and skeletons that are used to initiate
and process the RPCs.

6 Distributed Objects

6.1 Overview

1. Fundamental Properties of Objects
2. Local and remote object references
3. Parameter passing
4. Object invocation types
5. Distributed Object Services
6. Object Request Broker Architectures
7. Interface Design
8. Java RMI
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6.2 Basic Principles

6.2.1 Objects vs. Abstract Data Types

• Objects are data structures that combine state (data) and behavior (methods or functions) in a
single entity. They are a key concept in object‑oriented programming (OOP).

• Abstract data types (ADTs) are data structures that are defined by the operations that can be
performed on them, rather than by their implementation. ADTs are often used to model real‑
world concepts or objects.

There are some differences between the two:

• Objects have an identity, which is a unique identifier that distinguishes the object from other
objects in the system. ADTs do not have an identity in the same way that objects do.

• Objects may store state (data) within themselves, while ADTs do not store state. Instead, they
define the operations that can be performed on data stored elsewhere.

• Objects may be implemented in different ways depending on the programming language or
system in which they are used. ADTs, on the other hand, are defined more abstractly and can
be implemented in many ways.

6.2.2 Properties of Objects

• Local objects are created with the new() operator and are only accessible within the scope of
their creator.

• An object reference is a unique identifier that is used to locate and access an object. It is re‑
turned when the object is created and can be used to call the object’s methods.

• Objects have a lifecycle that is tied to their creator. They exist as long as the virtual machine
(VM) is alive and the objects are in use, and they are typically destroyed when their creator is
destroyed.

• Objects have fine‑granular interfaces and methods, which means that they expose a large
number of individual functions or operations that can be performed on them.

• Objects can be small and numerous, whichmeans that theremay bemany objects in a system,
each with its own state and behavior.

Objects in an object‑oriented (OO) programming language do have many properties that can make
them challenging to implement in a concurrent or distributed system.
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6.2.3 Challenges for Remote Objects

Remote objects (ROs) are objects that are accessed and managed remotely, typically over a network.
They are a key concept in distributed object systems, which are systems that enable objects on differ‑
ent machines to communicate and interact with each other.

• Object identity is usually only valid locally, meaning that it is only meaningful within the
scope of the machine on which the object is stored. This can make it difficult to identify and
access ROs from a remote machine.

• ROsmust be created and managed by a server, rather than by a client. This is because the
client does not have direct access to the objects and cannot create them using the new() oper‑
ator.

• Clientsmust have a way to find and access ROs, which may involve using a registry or other
lookup service.

• Concurrent access to ROsmust be controlled to prevent conflicts and ensure the consistency
of the objects’ state. This may involve using locks, mutexes, or other synchronization mecha‑
nisms.

• ROs may have a longer or shorter lifespan than local objects, depending on how they are
managed by the server.

• If a server dies, the ROs it wasmanagingmay also be destroyed, depending on how the system
is configured. This could potentially cause clients to lose access to their objects.

• The state of an ROmay be maintained by the server or by the client, depending on the im‑
plementation of the system.

• If a client dies, the ROs it was usingmay continue to exist on the server, depending on how
the system is configured.

• The cost of using ROs may be higher than using local objects due to the overhead of commu‑
nication and synchronization across the network.

• ROs may have the same interface as local objects, or they may have a different interface that is
tailored to the needs of remote clients.

6.2.4 What is a Remote Object?

• A remote object is an object that is accessed andmanaged remotely, typically over a network.
• It is a combination of a unique identity, an interface, and an implementation.
• The unique identity is used to locate and access the object from a remote machine.
• The interface defines the operations that can be performed on the object.
• The implementation is the code that defines how the object behaves and carries out these op‑
erations.
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• Clients know the interface and use the identity of the remote object, but do not know about
the implementation.

• To clients, the interface of the remote object represents the entire object.
• Achieving complete transparency of remote calls behind object interfaces can be challenging
in practice, especially in distributed systems.

6.3 Components of Distributed Objects

6.3.1 Object Models and Type Systems

CORBA:

• Defines its own basic types, including sequence, string, array, record, enumerated, and union.
• Uses value objects (data) to represent data that is passed between objects.
• Uses remote object references (reference semantics) to locate and access objects on remote
machines.

CORBA is designed to provide language independence, so it defines its own types anddoes not allow
user‑defined classes to be used in the interfaces of remote objects.

Java RMI:

• Uses the basic types of the Java language, such as int, byte, etc.
• Allows serializable non‑remote objects (value semantics) to be used as value objects.
• Uses remote object references (reference semantics) to locate and access objects on remote
machines.

JavaRMIallowsuser‑definedclasses tobeusedasvalueobjects if theyare serializable, but is specific
to the Java programming language.

6.3.2 Accessing Remote Objects

• A naming service is a service that acts like a directory and allows clients to look up the location
of a remote object based on its name or other identifier. The client can then use the location
information to access the object.

• Aweb server can be used to host serialized versions of remote objects. The client can request
the object from the server over the web and deserialize it to access its methods and state.

• Remote objects can be accessed through other means, such as via mail or a piece of paper. For
example, a clientmight send a request for a remote object to anothermachine viamail or other
physical means, and the server could return the object or a reference to the object in the same
way.
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• Another remote object can serve as a “factory” that creates and manages other remote ob‑
jects. The client can access the factory object and use its methods to create and access other
remote objects as needed.

6.3.3 The Broker Pattern

• Is a design pattern that involves using a separate component (the broker) tomediate communi‑
cation between two other components (the client and the service).

• Serves as an intermediary between the client and the service and is responsible for routing
requests and responses between them.

• Decouples the client and the service, allowing them to evolve independently and communi‑
cate through the broker.

6.3.4 Remote Object Reference

• Object implementation (servant): The object implementation is the code that defines how
the object behaves and carries out its operations. This is also known as the object’s “servant,”
as it serves the object and carries out its requests.

• Object adapter: Theobject adapter is a component thatmanages the communicationbetween
the object implementation and the object request handler (ORB). It is responsible for routing
requests from the ORB to the object implementation and returning responses to the ORB.

• Active objectmap (remote object table): The active object map is a data structure that maps
object identifiers to object implementations. It is used to locate the object implementation for
a given object identifier.

• Object request handler (ORB): The ORB is the component that handles requests to and from
remote objects. It is responsible for marshalling and demarshalling requests and responses, as
well as routing requests to the appropriate object adapter.

• Host, port, protcocol, object adapter, object ID: The system‑wide object reference

6.3.5 Static vs Dynamic Invocation

Static Remote Method Invocation

• Involves using pre‑generated stubs that are linked to the client program in advance.
• The client program uses the stubs to invoke the remote method in the same way that it would
invoke a local method.

• The stubs handle the details ofmarshalling anddemarshalling the request and response, as
well as routing the request to the appropriate object on the remote machine.
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Dynamic Invocation:

• Involves building a request object at runtime, based on the meta‑information of the remote
object.

• The request object is sent to a dispatcher on the servant host, which handles the request as if it
were a normal method invocation.

• The dynamic invocation approach is similar to the reflection pattern, which involves using
meta‑information about an object to manipulate it at runtime.

6.3.6 Asynchronous Invocations

• One‑way calls: One‑way calls are calls that do not expect a response from the server. They
are called “one‑way” because they involve only a single message being sent from the client to
the server. One‑way calls cannot have return values or out parameters, and their delivery is
best‑effort (meaning that there is no guarantee that the message will be delivered).

• Deferred synchronous: Deferred synchronous invocations involve making a call to a remote
method and continuing to execute while the method is being executed. The client can later
check for the results of the method (blocking), but the delivery is at‑most‑once (meaning that
the message will be delivered at most one time).

• True asynchronous with server callbacks: True asynchronous invocations involve making a
call to a remote method and continuing to execute while the method is being executed. The
server can differentiate between synchronous and asynchronous calls and can send a callback
message to the client when the results of the method are available. True asynchronous invoca‑
tions require messaging middleware to achieve at‑most‑once delivery guarantees.

6.4 Implementing Remote Objects

6.4.1 Main Distributed Object Services

• Finding objects:

– Naming service: Maps names to object references
– Trading service: Allows objects to offer their services and allows clients to search for ob‑
jects by constraint

• Preserving object state

– Persistence service: Stores object state transparently and allows it to be loaded on de‑
mand
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– Transaction service: Preserves object consistency across changes to multiple objects in
a distributed, nested, or flat context

– Concurrency service: Provides locks for shared objects
– Security service: Checks the roles of principals

• Grouping of objects: Collections

6.4.2 Portable Interceptors

Interceptors can be used to transparently add additional (context) information to calls and trans‑
port it between object request brokers (ORBs).

6.4.3 Remote Interface Design

• Respect thepossibilityof concurrent calls in your interfacedesign: Avoidkeeping inconsistent
state across method calls.

• Avoid the “half‑baked object” anti‑pattern: Do not perform staged initialization of an object.
• Avoid using complicated or unclear orders of calls: Design the interface in a clear and straight‑
forward manner.

6.4.4 Problemswith Remote Objects

• Interfaces: Remote object interfaces can be too granular, with many small methods that per‑
form simple tasks. This can lead to slow performance, as each call to a remote object involves
a significant amount of overhead.

• No direct support for state handling on servers: Distributed object systems do not generally
provide direct support for managing the state of remote objects on the server side. This can
make it difficult to maintain consistent state across multiple remote objects or to persist the
state of an object across different contexts.

• Bad for “data schlepping” applications: Remote objects are often too expensive to use in
applications that involve “data schlepping,” or the transfer of large amounts of data between
the client and server. This is because each call to a remote object involves significant overhead,
which canmake it inefficient to transfer large amounts of data.

• Cross‑language calls expensive to build: Making calls between objects implemented in dif‑
ferent programming languages can be expensive, as it often requires the use of complex mar‑
shalling and unmarshalling mechanisms to convert data between the different languages.
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• No security in calls: Distributed object systems do not generally provide built‑in security for
remotemethod calls, which canmake it difficult to enforce security policies or protect sensitive
data.

• No transaction support: Distributed object systems do not generally provide built‑in support
for transactions, which can make it difficult to ensure the consistency of data across multiple
objects in a distributed system

6.5 Java RMI

6.5.1 Java RMI Request/Reply Protocols

JRMP (Java Remote Method Protocol) is the first protocol for RMI. It has the following characteris‑
tics:

• Bandwidth problems due to distributed garbage collection with short term leases and perma‑
nent reference counting.

• Allows for the dynamic download of code.

RMI‑IIOP (RMI over CORBA’s Internet Inter‑Orb Protocol) has the following characteristics:

• Uses Java Naming and Directory Interfaces (JNDI) to lookup object references and is persis‑
tent.

• Requires code changes and the use of PortableRemoteObject.
• Requires the generation/definition of code and IDL files for CORBA systems.
• Allows for the movement of IDL files for Java Remote Object Interfaces to CORBA systems, and
the generation of CORBA stubs with IDL compilers. This allows CORBA systems to call Java
remote objects, or for Java systems to call into CORBA systems.

6.5.2 Java RMI Classes & Tools

• Remote: Tag interface that Remote Object Interfaces extend.
• RemoteException: Class that is thrown by all Remote Object methods.
• Naming: Class that is used by clients to find remote object references, and by servers to register
their objects.

• UnicastRemoteObject: Class that Remote Object Implementations extend.
• rmic: Tool that generates stub/skeleton/IDL files.
• registry: Simple name server for Java objects.
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6.5.3 Activation in Java RMI

Activation is an important feature in JavaRMI (RemoteMethod Invocation)because it allows servers to
transparently store servant state on persistent storage and recreate servants on demand. This helps
the server control its resources against memory exhaustion and performance degradation.

6.5.4 Security in Java RMI

• Specify the quality of service (QOS) of sockets used by RMI, such as using an SSL channel.
• Use anRMISecurityManager to prevent or control local access from downloaded implementa‑
tions.

7 Distributed Business Components

7.1 Overview

• Part One: General Component Technology covers the following topics:

– The limitations of traditional object‑oriented programming.
– Distributed components.
– Mapping business concepts to programming constructs.

• Part Two: Enterprise Java Beans Example covers the following topics:

– Object model of Enterprise Java Beans (EJBs).
– Basic mechanisms of EJBs.
– Separation of concerns in EJBs, including persistence, transactions, and security.
– Separation of context in EJBs, including the environment.
– Evolution and lessons learned from EJBs.

7.2 Basic Principles

7.2.1 ProblemsWith Object Interfaces

• Object interfaces are tightly intertwined networks of references that share state and promises,
and changes to these interfaces can have ripple effects.

• A component framework can simplify the interface for calling objects by encapsulating them.
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• Amessaging system can be stateless, or it can include all necessary state in themessage itself,
which is known as context‑complete communication. This approach is used in webservices
and REST architectures and is known as Service Oriented Architecture (SOA).

7.2.2 Component Based Processing

• Components are self‑contained softwarepackageswith runtime interfaces and automatic de‑
ployment capabilities that are designed to fit into a component framework.

• A component framework allows components to be plugged in and supports the composition
and collaboration between them.

• There are roles for development, composition, and installation of components in the compo‑
nent model.

Enterprise components build on this:

• Integration with existing infrastructure, such as transactions, security, and legacy systems
• Network addressable interfaces
• Medium to large granularity, potentially representing 10‑20 tables or more
• Representation of a business concept in an isomorphicmanner

7.2.3 FromObjects to Components

1. Object‑oriented design involves isolated, monolithic applications that are not distributed.
2. Distributed objects involve calls between applications, but can havemanagement and perfor‑

mance issues with large numbers of small remote objects.
3. Distributed systems involve multi‑tier systems with point‑to‑point connectivity, but can be

expensive and difficult to develop.
4. Distributed components use a framework for pluggable business components and create a

market for interoperable components. This approach addresses modeling, development, and
deployment and aims to achieve re‑use and lower development costs.

Components gobeyonddistributed systems andwere designed to address someof the same issues
as object‑oriented development.

7.2.4 Business Components

• Business concepts, such as entities and processes, can be translated into software artifacts like
EC1 and PC1.
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• Business components are designed to directly represent concepts from the business and
may be represented using the UML “package” construct.

7.2.5 Alternatives to Isomorphic Mapping

• Isomorphic mapping, or the idea that software artifacts directly correspond to business con‑
cepts,may not always be the best approach.

• Alternatives to isomorphic mapping include domain analysis, generative computing, and
aspect‑oriented development.

• In generative computing, different models are used to capture the transformation process,
including computation‑independent models, platform‑independent models, and platform‑
dependent models.

7.2.6 Generative Computing

• Involves the use of domain‑specific languages and code generators to automate software
development

• Reduces the need for manual coding and allows developers to focus on design and function‑
ality

• Uses a high‑level, abstract description of the desired software, which is then converted into
actual code by a code generator

• Can save time and reduce the risk of errors by eliminating the need to manually write and de‑
bug code

• Often used in domains with repetitive or boilerplate code or where the complexity of the
codemakes manual coding impractical

• Can be used to create customizable software for different users or environments

7.2.7 Monolithic Software vs. Components

• Components are clusters of software, configuration, and other elements that forma unit for
deployment andmaintenance within a component framework.

• Components are made up of collaborating elements and can be adjusted without requiring
source code changes. This is an alternative to traditional applications, which are monolithic
and cannot be easily modified.
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7.2.8 Objects vs. Components

• A regular object combines business logic with specific mechanisms such as persistence and
hides the internal interfaces behind the external interface.

• Objectsmaymake assumptions about the environment, such as which database to use, and
these are hidden in the code.

• Customizing objects requires code changes, which can be time‑consuming and risky.

7.2.9 Separation of Concerns and Context

• The internal interface of a component is described inmeta‑information, which allows deploy‑
ers to connect the component to the appropriate framework services.

• Concerns suchaspersistenceand transactions are separated fromthebusiness logic of the com‑
ponent and are typically implemented by the framework.

• Context information, such as which database to use, is contained inmeta‑information rather
than in the code of the component.

• This separation of concerns and context allows components to be customized after develop‑
ment.

7.3 Enterprise Java Beans

7.3.1 Overview

• Enterprise Java Beans (EJBs) allow the construction of distributed applications by combining
components from different vendors.

• Developersdonotneedtounderstand low‑leveldistributedmechanismssuchas transactions
when using EJBs.

• Can run in EJB containers from different vendors without modification.
• Provide enterprise lifecycle support, including development, deployment, and runtime sup‑
port.

• Provide enterprise data support.

7.3.2 EJB Component Model

TheEJBcomponentmodel includes four typesofEJBs: stateless sessionbeans, stateful sessionbeans,
entity beans, and stateless message‑driven beans.

• Stateless session beans provide stateless services that are shared among clients.
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• Stateful session beans hold conversational state and are not shared among clients.
• Entity beansmap to rows in a database and are shared among clients. They are used to store
and access business data in a persistent manner.

• Stateless message‑driven beans receive messages asynchronously and can connect to an en‑
terprise MOM.

These different EJB types allow for scalability, client code on the server side, asynchronous process‑
ing, and the representationofbusinessdata. Entitybeansarepermanent,while stateful sessionbeans
do not survive a server crash.

7.3.3 Session Beans (Stateful and Stateless)

• Session beans are per‑client objects, except for stateful session beans which represent client
code on the server side.

• Both stateful and stateless session beans can participate in transactions if the session‑
synchronization interface is used.

• Session beansmay access databases, but do not directly represent persistent objects.
• Short‑lived and are removed when the container crashes.
• Stateless session beans are the most scalable and EJB servers should be able to support large
numbers of them.

7.3.4 Entity Beans (Deprecated Since 3.0)

• Entity beans are shared objects that are protected through transactions.
• They have a longer lifetime than session beans and represent important business data.
• Entity beans can be persisted through the container mechanism (Container Managed Persis‑
tence, or CMP) or they can handle their own persistence (Bean Managed Persistence, or BMP).

• Entity beans have a unique identity, which is visible to clients through a primary key, and
clients can request a “handle” which is a persistent pointer to the entity object.

• In EJB 3.0, persistence is no longer a concern for EJBs and is instead covered by the Java Per‑
sistence API.

7.3.5 Message‑Driven Beans

• Message‑driven beans are invoked asynchronously and do not have client context available
during processing.

• They can be transaction aware, meaning that message receipt and processing can be enclosed
in a single transaction.
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• Message‑driven beans are short‑lived and stateless, and are removed when the container
crashes.

• They do not directly map to business data.
• Message‑driven beans have been integrated into the general EJB framework to reuse EJB con‑
tainer services such as transactions, security, concurrency, and deployment description.

• If a message‑driven bean crashes during processing, the message is marked as “unread” and
can be processed after the container is restarted.

7.3.6 Client View of EJBs

• Clients never access the bean class directly.
• EJBs can offer a remote or local interface to clients (clients of the local interfacemust be in the
same Java virtual machine as the bean container).

• The business logic is contained in the bean class.

7.3.7 Local vs. Remote Interfaces

• The remote interface of an EJB uses remote object calling conventions, while the local interface
uses local Java calling conventions.

• When calling the local interface of an EJB, value objects arepassedby reference, meaning the
client and EJB will share the same objects.

• The remote interface, on the other hand, requires that value objects be copied.
• EJB implementers who want to provide both a local and a remote interface must be aware of
these different calling conventions and design their beans accordingly.

7.3.8 Separation of Concerns and Context in EJB

Separation of concerns is done through the EJB framework, separation of context is done through
deployment:

• The automatic transaction management feature maps to system management transaction
modes.

• Persistencemaps to systemmanagement definitions of data sources and pool sizes.
• Automatic, method‑level security maps to system management definitions of role/user bind‑
ing.

• The roles involved in component development, application assembly, and deploymentmap to
the deployment descriptor and JNDI interface.
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7.3.9 The EJB Container

1. A client invokes an entity bean interface.
2. The container delegates the request to the entity bean business logic.
3. The entity bean business logic delegates tasks such as transactions, persistence, and security

to resources accessed through JDNI and a database.

At the point of interception, the container provides resource management, lifecycle, state manage‑
ment, transactions, and security services to the bean.

• Containers are increasingly taking over roles that were previously the responsibility of op‑
erating systems, such as isolating different applications from each other.

• In the J2EE environment, class loaders are used for this purpose.
• However, it is believed thatabetter concept is needed that does notmix loadingwith isolation.

7.3.10 Containers and Threads

• Containers manage resources across applications and store context and session information in
threadlocal storage.

• As a result, container‑managed applications are not allowed to create their own threads,
as these threads would not have the necessary metadata and context information.

• EJB 3.0 offers a managed service for connectors to create threads, allowing applications to use
threads without having to manage resources themselves.

• Applications should not assume responsibility for resource management, as the container is
responsible for choosing the appropriate resourcemanagement policy.

7.3.11 Entity Bean Container Contract

The Entity Bean‑Container Contract defines a set of methods that the container can call on an entity
bean in order to manage its lifecycle and access resources.

These methods include:

• setEntityContext: Bean stores context as an interface to the environment
• PrimaryKeyClass ejbCreate: Actions related to bean instance construction
• ejbPostCreate: Bean identity is now available
• ejbActivate: Bean can acquire necessary resources
• ejbPassivate: Bean releases resources, expecting to be put back into the pool
• ejbRemove: Last chance for the bean before destruction
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• ejbStore: Bean should update its internal state, expecting it to be synchronized with the
database right after this

• ejbLoad: Bean should update its internal state, expecting that its virtual fields have just been
read from the database

• ejbFind, ejbSelect: Query methods generated at deployment
• ejbHome<method>: Business logic that does not require an object identity

The actions that can be performed in these frameworkmethods depend on the availability of a trans‑
actional context, object identity, local or remote view, and client security context.

7.3.12 Bean Managed vs. Container Managed Persistence

There are twomain approaches to persistence in EJBs: bean‑managed and container‑managed.

• Inbean‑managedpersistence, thebean is responsible for performing its ownpersistence,with
the timing of these actions controlled by the container.

• In container‑managed persistence, the bean’s state is completely stored and loaded by the
container.

It is generally believed that container‑managed persistence is the preferred approach in the fu‑
ture, as it is more portable and does not require adjustments to different datastores. Bean‑managed
persistence, on the other hand, is less portable and requires more effort to adapt to different datas‑
tores.

7.3.13 JNDI Naming Context

• EJBs locate all their resources through JNDI (Java Naming and Directory Interface) calls, which
allows deployers to specify the proper services for each EJB through the deployment de‑
scriptor.

• This allows the deployer to manipulate all JNDI lookups and customize the resources that
each EJB has access to.

7.3.14 Deployment Descriptor

• The deployment descriptor is a file that contains meta‑information about an EJB in XML for‑
mat.

• This meta‑information is used by different components, including the bean itself (to declare
the names and interfaces used), the deployer (to adjust values for specific environments), and
generators (to generate queries from themeta‑information).
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7.3.15 Security Support

Principal delegation:

• In this mode, the EJB container passes along the identity of the original caller (client) to the
EJB, allowing the EJB to operate under the same identity as the client.

• This allows the EJB to access resources and perform actions based on the permissions of the
client.

“Run as” identity:

• In thismode, theEJBcontainerassignsa specific identity to theEJB, regardlessof the identity
of the original caller.

• This allows the EJB to operate under a specific identity that is different from the client’s identity,
and allows the EJB to access resources and perform actions based on the permissions of the
assigned identity.

• This canbe useful in situationswhere the EJBneeds toperformactions onbehalf of a specific
user or group, regardless of the identity of the client.

7.3.16 Transaction Modes

EJBs support several transaction modes, which allow developers to specify the level of transaction
support required by the EJB.

The available transaction modes are:

• Not supported: The EJB does not require or support transactions.
• Required: The EJB requires that a transaction be active when it is called, and will participate
in the existing transaction if one is already active. If no transaction is active, a new one will be
started.

• Supports: The EJB will participate in an existing transaction if one is active, but it does not
requirea transaction tobeactivewhen it is called. If no transaction is active, theEJBwill execute
without a transaction.

• RequiresNew: The EJB requires a new transaction to be started when it is called, regardless of
whether a transaction is already active.

• Mandatory: The EJB requires that a transaction be active when it is called, and will throw an
exception if no transaction is active.

• Never: The EJB does not support transactions and will throw an exception if a transaction is
active when it is called.
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7.3.17 Best Practices for EJBs

• Use local interfaces if possible to reduce network overhead
• Use transfer objects to reduce network traffic
• Avoid excessive use of entity beans and use local session beans instead
• Use message driven beans for asynchronous processing
• Use container managed transactions and security to simplify development
• Use container managed persistence and avoid beanmanaged persistence if possible
• Use the JavaPersistenceAPI (JPA) for persistencemanagement instead of entity beans in EJB
3.0 and later

• Properly design your data model and access patterns to optimize performance
• Use performancemonitoring tools to identify and fix bottlenecks in your application
• Properly size and configure your EJB server to meet the needs of your application.

7.3.18 Shortcomings of EJBs

• Large number of artifacts for the programmer to control
• Meta‑data separated in deployment descriptor instead of code
• Home interfaces and finding of remote objects tedious
• Performance problems in the O/Rmapping due to abstract schema approach
• No rapid prototyping possible
• Entity beans overloadedwith security, transactions and persistence

7.3.19 NewWays for Object‑Relational Mapping

• The trend towards using generic, abstract schema mappings for O/R mapping appears to be
over, and SQL is becomingmore prevalent.

• Developers have historically had difficulties with the highly abstract entity beans used in Enter‑
prise Java Beans (EJBs) for persistence. The use of plain old Java objects (POJO) for persis‑
tence has been seen as a more straightforward and effective solution.

7.3.20 Lessons Learned from EJBs

• It takes a long time to develop and scale a complex framework for components like EJBs.
• It is important to get the interfaces right in order to achieve good performance.
• Developers may not fully understand the implications of abstractions.
• Frameworks can sometimes require developers to do unnecessary code duplication.
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• It is important to avoid coupling too many concerns (such as transactions, persistence, and
security) in a single framework.

• Code generation can be helpful, but it requires tooling and customization.
• It is best to wait for “best practice patterns” to emerge before implementing complex new
technology on a large scale.

8 Services

8.1 Overview

• A recap of CORBA
• Web services
• SOA
• Microservices
• Conway’s Law
• Serverless computing

8.2 Timeline of Distributed Service Architectures

• In the early 1990s, distributed service architectures for use in intranets (private networks)
emerged, including Unix RPC and DCE.

• In 1998, CORBA (CommonObject Request Broker Architecture) was introduced as a distributed
service architecture for use in intranets.

• In theearly 2000s, theREST (Representational StateTransfer) architectural stylewas introduced
for building web services that could be accessed over the internet.

• In 2004,SOA (Service‑OrientedArchitecture) emergedas away todesign andbuildweb services
that could be easily reused and composed to create larger, more complex systems.

• In 2010, the Microservices design pattern became popular as a way to build large, complex
applications by composing small, independent services that communicate with each other
through APIs.

• In 2016, the concept of Serverless Computing, emerged as away to build and run applications
and services without the need to manage underlying infrastructure.
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8.3 CORBA

8.3.1 CORBA Security Model

• In the CORBA security model, the concept of secure delegation is used to ensure that commu‑
nication between systems is secure.

• When systems communicate with each other, they authenticate themselves to ensure that
they are authorized to exchange information.

• Tokens are used to flow client information between systems, but no secrets are shared.
• Defined routes are used to prevent token abuse and ensure that later tiers can verify the origi‑
nal requestor and route of the request.

8.3.2 CORBA Core Properties

• CORBA was primarily designed as an intranet technology for use within private networks.
• CORBA is language‑independent, with a focus on defining interfaces between systems.
• The IIOP (Internet Inter‑ORB Protocol) is the base protocol used in CORBA to ensure interoper‑
ability and handle cross‑cutting concerns.

• IIOP also provides delivery guarantees for communication between systems.
• CORBAwas primarily used to connect heterogeneous (legacy) software in large corporations.
• The standardization process for CORBA was difficult and tedious.
• The use of “boilerplate code” in CORBA often led to extensive code generation and model‑
driven development.

8.4 Web Services

8.4.1 Overview

• A Web Service is a software component that represents a business function or service, and
can be accessed by other applications over public networks using standard protocols and
transports (such as SOAP over HTTP).

• Web Services use XML to create requests and responses and send them using HTTP, allowing
machines to communicate with each other for various purposes, such as supply chainmanage‑
ment or business‑to‑business processing.

• XML‑RPC, proposed by David Winer, was one of the earliest standards for Web Services.
• Web Services have been used internally by companies for some time.
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8.4.2 Web Services Core Properties

• Web Services use “simple” requests that can be sent over public networks/the internet using
HTTP transport for firewall reasons.

• XML is used as the message format for Web Services, making them language‑independent.
• Features such as reliability, security, and transactions were added to Web Services to improve
their functionality.

• Many Web Services were re‑writes of CORBA interfaces using XML syntax and expressing a
business function.

• Web Services were heavily promoted as a solution for automatic interoperability based on self‑
describing services and ontologies, but this was largely overhyped.

• The technical foundation for Web Services was provided by forms of XML‑RPC, although the
acronym “SOAP” (Simple Object Access Protocol) did not actually have anything to do with dis‑
tributed objects.

8.4.3 UDDI Functionality

UDDI (Universal Description, Discovery, and Integration) is a registry that provides a “find andpublish”
API for distributed services. It works like this:

1. Providers publish their services in a registry.
2. Requesters search for the desired service in the UDDI (Universal Description, Discovery, and

Integration) registry.
3. The UDDI registry retrieves the provider location and WSDL (Web Service Description Lan‑

guage) service description for the requester.
4. The requester creates a request based on the WSDL description.
5. The requester sends the request to the provider using a specified transport protocol (such as

SOAP over HTTP).

This type of architecture is called “service‑oriented” because it uses a broker for service advertise‑
ment and lookup, and requester andprovider bind dynamicallywith respect to the transport protocol
used.

8.4.4 UDDI Content and Categories

• All content in UDDI is expressed in XML.
• The UDDI registry includes information about companies and services, as well as meta‑
information elements such as tModel.
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• A key feature of UDDI is the expectation that requester and provider will do a dynamic bind,
agreeing on service and transport characteristics.

The UDDI registry has three main categories of information:

• White pages: information about companies, such as location and contact details.
• Yellow pages: business categorization and classification by type and industry.
• Green pages: meta information about services and their qualities.

8.4.5 WSDL Overview

• WSDL (Web Service Description Language) is themetadata language used by Web Services.
• WSDL defines how service providers and requesters understand Web Services.
• When exposing back‑end systems as Web Services, WSDL defines and exposes the compo‑
nents and lists all the data types, operations, and parameters used by the service.

• WSDL provides all the information that a client application needs to construct a valid SOAP
invocation, which is thenmapped onto back‑end enterprise logic by theWeb Services platform.

8.4.6 WSDL Elements

• WSDL documents define services as collections of network endpoints or ports.
• Theabstractdefinitionsof endpointsandmessages inWSDLare separated fromtheir concrete
network deployment or data format bindings.

• Separation of abstract and concrete definitions allows for the reuse of abstract definitions

It includes the following elements:

• Types: A container for data type definitions using a specified type system (such as XSD).
• Message: An abstract, typed definition of the data being communicated.
• Operation: an abstract description of an action supported by the service.
• Port Type: An abstract set of operations supported by one or more endpoints.
• Binding: A concrete protocol and data format specification for a particular port type.
• Port: A single endpoint defined as a combination of a binding and a network address.
• Service: A collection of related endpoints.

8.4.7 SOAP

• SOAP is an RPC (Remote Procedure Call) protocol that uses XML. It includes elements for type
marshalling and RPC semantics.
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• The header element in SOAP can containmeta‑information, but it is optional.

There are several aspects that define it’s performance:

• Marshaling time
• Internet transport time
• Effect of size on transport
• Demarshaling time

It has been found that internet transport time, especially in the absence of Quality of Service (QoS)
measures, has a greater impact on overall request time than the size and interpretation effort of a
textual format.

8.4.8 Security andWeb Services

• SOAP, WSDL, and UDDI: Message Envelope, Interfaces Definition, and Registry.
• WS‑Security: Secure Messaging Definitions.
• WS‑Trust: How to Get Security Tokens (issuing, validation, etc.).
• WS‑Federation: How to Make Security Interoperable Between Trust Domains.
• WS‑Policy: How to Express Security Requirements.
• SAML: A Language to Express Security‑Related Statements.
• WS‑Reli: Rights Management.
• WS‑Util: Helper Elements.
• WS‑Authorization: Expression of Access Rights.

8.4.9 Reliable Messaging

Reliable B2B (Business‑to‑Business) messages require the following qualities:

• Guaranteed delivery (acknowledgement enforced)
• Duplicate removal (using message ID)
• Message ordering (using sequence numbers)

SOAP and HTTP partially achieve this like so:

1. The first application layer exchanges persistent messages with the requester.
2. The requester sends a SOAP message with a message ID, sequence number, and QoS (Quality

of Service) tag to the receiver.
3. The receiver must send an acknowledgement.
4. The receiver exchanges persistent messages with the second application layer.
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8.4.10 Secure Messages

• Digital signatureswith XMLDsig
• Digital encryptionwith XMLEnc
• WS‑Securitymoves fromchannel‑based security tomessage (object)‑based security, allowing
individual messages to be signed and encrypted.

• WSDL can advertise the QoS expected/provided by a receiver.
• End‑to‑end security is possible across intermediaries.
• Today, federation (expressed in theWS‑Federation standard) is more important, as seen in the
use of OAuth2.

• Intermediaries can add signatures or encryption to the SOAP envelope to create a chain of
trust.

• New signatures or encryption information is always prepended to existing information.
• No encryption of the envelope, header, or body tag is allowed.
• Signatures must respect the right of intermediaries to change the envelope or some header
information.

8.4.11 SAML

• SAML allows externalization of policies and mechanisms related to authentication, autho‑
rization, and attribute assertion.

• Theaccess control pointonlyneeds tocheckassertionsanddoesnothave to implement these
mechanisms.

• SAML allows interchangeability of statements between different services because the for‑
mat of the assertions is fixed.

8.4.12 Transaction Models

Atomic transactions:

• Are not nested (standalone)
• Are short
• Involve a tightly coupled business task
• Can be rolled back in case of error
• Can be disrupted by system crashes

Activity transactions:

• Involve nested tasks
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• Are long‑running
• Involve a loosely coupled business activity
• Include compensating tasks and activities to address errors
• Can be disrupted by errors such as order cancellations

8.4.13 Stateful Web Services

• Stateful architectures, such as computational grids, require the concept of a resource.
• WS‑Resource is a protocol that adds resource information to web services throughmetadata
descriptions in the WSDL and WS‑Addressing schemas.

• An identifier is used to communicate state information between requestors and endpoints.
• Advanced notification requests can be built on top of WS‑Resource.

8.4.14 Scaling Web Services

• Avoid using XMLmessaging for fine‑grained RPC, such as requesting the square root of a num‑
ber or a stock quote.

• Use course‑grained RPC instead, with web services that “do a lot of work, and return a lot of
information”.

• Consider an asynchronous messaging model when the transport may be slow or unreliable,
or the processing is complex or long‑running.

• Take the overall system performance into account and don’t assume that XML’s “bloat” or
HTTP’s limitations are a problem until they are demonstrated in your application.

• Consider the frequency of messaging when designing your web service. A high rate of re‑
quests may suggest that you load (replicate) some data and processing back to the client.

• Forweb services that aggregate data fromotherweb services, consider performing theaggre‑
gation on demand or during off‑hours in one large, course‑grained transaction.

8.4.15 Why UDDI Failed

UDDI relied on the following assumptions:

• Central registries of service descriptions
• Independent automatic agents searching for services
• Machines understanding service descriptions
• Machines deciding on service use
• Machines being able to use a service properly
• Machines being able to construct advancedworkflows from different services
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These assumptions were problematic because:

• There is often ambiguity, undefined aspects, and incompatible terms in service descriptions
and interfaces.

• It is difficult for machines to properly use and construct advancedworkflows from different ser‑
vices.

To summarize, UDDI lacks technology to address the following issues:

• Themeaning of data types and interfaces
• Themeaning of actions
• Risk assessment
• Understanding flows and goals
• Understanding andmatching of constraints

8.4.16 Lessons Learned fromWeb Services and CORBA

• Web services and CORBA are low‑level concepts that lack semantics.
• Workflow has not been effectively addressed by web services and CORBA.
• Service‑Oriented Architecture (SOA) is not only about interfaces and interface design, but also
about hosting services.

• The availability of a service on the web is more valuable than many specifications and inter‑
faces.

8.5 SOA

8.5.1 SOA Core Properties

• Services offer high‑level interfaces that relate to business functions.
• Service choreography (i.e. the coordination of services to achieve a larger business process) is
performed outside the individual services.

• Semantic standards and technologies (such as OWL, SAML, and the Semantic Web) are used
to enable agents to understand services and their interfaces.

• Legacy applications can be made available to other companies through the use of a service
interface.

• SOA relies onWeb Service technology as its foundation.
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8.5.2 SOA Interface Design

• Object interfaces can be conversational, accept transactions, and are fast. They use object
references.

• Component interfacesusevalueobjects, havea transactionborder, andaregenerally stateless.
They are relatively fast.

• Service interfaces are used for long‑running transactionswith state stored in a database. They
include compensation functions and have short process times but long business task execution
times. Service interfaces are isolated, independent, and can be composed with larger services
(choreography) or made up of smaller services (orchestration). They are stateless.

8.5.3 SOA Blueprint Service Types

• Component Services: These are atomic operations on simple objects, such as database access.
• Composite Services: These are atomic operations that usemultiple simple services (orchestra‑
tion) and are stateless for the caller.

• Workflow Services: These are stateful services with defined state changes, with the state kept
in a persistent store.

• Data Services: These provide information integration through a message‑based request and
response mechanism.

• Pub/Sub Services: These are event‑based services with callbacks and registration.
• Service Broker: These are intermediate services thatmanipulate and forwardmessages based
on rules.

• CompensationServices: These revert actions, but donot roll back like traditional transactions.

8.5.4 SOA vs. Microservices

SOA:

• Services are usually larger andmore transactional.
• Prefer orchestration using higher level middleware components.
• Enterprise‑oriented architecture with middleware (messaging), service layers, and owner‑
ship concepts.

• Uses metadata andmessaging middleware for contract decoupling.
• Follows a “share asmuch as possible” approach.
• Big services are transactional.

Microservices:
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• Smaller andmore specialized than SOA services.
• Use eventual consistency technologies, which are not ACID.
• Prefer choreography, which can lead to highly connected and dependent systems.
• Have a simple API gateway and teams own their infrastructure and business services.
• Do not use contract decoupling.
• Follow a “share as little as possible” approach.

8.6 REST

8.6.1 RPC vs. REST

• The web is based on representing resources using URIs, while web services create private,
non‑standard ways of accessing information.

• The envelopeparadigmused inRPCdoesnotofferanybenefits over thegenericHTTPmeth‑
ods (GET, PUT, POST).

• RPCmechanisms are not suitable for the web. Some extensions to the HTTP methods might
be necessary to support certain features, such as tuple‑space systems.

8.6.2 TheWeb’s Architecture

• Follows a client‑server model, where clients request resources from servers.
• Has a uniform interface, with resources identified using URIs and manipulated through repre‑
sentations.

• Messages are self‑descriptive, with metadata, headers, and other information that allows
them to be understood and processed by clients and servers.

• Uses hypermedia as the engine of application state (HATEOAS), meaning that responses to re‑
quests include actionable links that allow clients to navigate the system and access related re‑
sources.

• Is a layered system, with intermediaries such as caching servers, security systems, and load
balancers playing important roles.

• Is designed to be cacheable, with responses indicating whether they can be cached and for
how long.

• Is stateless, meaning that clients need to provide context and state information with each re‑
quest.

• Allows for code‑on‑demand, where servers can send scripts, applets, andother code to clients
as needed.
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8.6.3 REST Maturity Model

• RESTLevel 0 (RPC): This level resembles regular RPC,with function calls beingmade to a single
endpoint. Resources are not accessible and do not have an identity.

• REST Level 1 (Resources): Function names and parameters are turned into resources, and ap‑
pointments now have an identity that can be accessed through GET and POST requests.

• REST Level 2 (HTTP verbs): It is important to use the correct HTTP verb (GET, POST, etc.) to
indicate the intended action. GET is idempotent and creates cachable resources. Response
codes are used to indicate the status of the request, such as the creation of a new resource or a
conflict.

• RESTLevel 3 (HATEOAS): Responses include encoded actions that can be invokedby the client.
Services can change their URIs without breaking clients, and the “rel” attribute is used to de‑
scribe the semantics behind the URI link.

8.6.4 REST Resource Archetypes

• Document: Fields and links representing a base resource. Created using POST.
• Collections: Containers maintained by the server with URI generation. Created using POST.
• Stores: Container elementsmaintained by the client with “put” andwithout URI generation on
the server side. Inserted or updated using PUT.

• Controllers: Procedures accessed using POST.
• URI path design: Reflects the resource model, with variable path segments and query terms.

8.6.5 CRUDwith REST

In RESTful web services, requests are made by a requestor to a representation of a resource. The
HTTPmethods (GET, POST, PUT, DELETE) are used to perform different actions on the resource:

• GET: Reads the resource and does not change the server state (idempotent).
• POST: Creates a new resource on the server.
• PUT: Updates an existing resource on the server.
• DELETE: Deletes a resource on the server.

The separation of updates and reads is a principle of good software design that has been around for
a long time. It is known as the “command‑query separation principle” and was made a requirement
in the Eiffel programming language.
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8.6.6 RESTful Web Features

RESTful web services have four key characteristics:

• Use the HTTP protocol in a CRUD‑likemanner, with HTTP methods corresponding to different
actions on resources.

• Are stateless, meaning that the client and server do not maintain a persistent connection or
state information between requests.

• Use meaningful URIs to represent objects and their relationships in the form of directory en‑
tries, with relationships typically being parent/child or general/specific entity relations.

• Use XML or JSON as a transfer format and content negotiation with mime types.

8.6.7 Critical Points with REST

• Delivery of requests: How to handle at‑least‑once or at‑most‑once delivery and transactions.
• Security: How to secure requests and delegate security to backend systems (e.g. bearer to‑
kens).

• Performance: How to optimize performance over HTTP, especially with large amounts of data
or many round‑trips.

• Single responsibility: How to avoid the service becoming heavy, kludgy, and serve more than
a single responsibility over time.

8.6.8 GraphQL as a REST Alternative

• Avoids over‑ and under‑fetching of data by allowing the client to specify exactly what data it
needs in a single request.

• Reduces the number of requests needed by allowing the client to request all the necessary
data in a single request.

• Uses a single endpointwith resolvers to handle all requests.
• Uses a uniform syntax for both data and queries, making it easy to use and understand.
• Is typed to prevent mistakes and ensure that the correct data is returned.
• Supports federated servers, allowing multiple servers to be combined and accessed through
a single endpoint.

• Has the potential for huge queries, which can be a danger if not carefully managed.
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8.7 Microservices

8.7.1 The Reasons for Microservice Adoption

• Ultra large‑scale sites require efficient horizontal scaling.
• Unicorn companies (successful startups) need to develop new features quicklywith indepen‑
dent teams.

• Unicorn companies need to deploy new features quickly due to competition and the need for
experimentation.

• Unicorn companies need to offer an API for network effects.

8.7.2 Scalability Problems of Monolithic Applications

• Monolithic applications can only be deployed as a whole, making it difficult to scale specific
components.

• The central database of a monolithic application can be hard to scale.
• The API of a monolithic application can be hard to scale.
• Developers are dependent on the general release plan for the entire application, which can
be inflexible and slow.

8.7.3 Scalability Benefits of Microservices

• Individual functions can be deployed independently, making it easy to perform A/B testing.
• Independent teams and releases are possible, allowing for more flexibility and faster devel‑
opment.

• Databases are often independent due to sharding, making it easy to scale them.
• The API can be quickly scaled to meet demand.

8.7.4 The Microservice Ecosystem

• Continuous integration/deployment allows for rapid experimentation.
• Fully automated build and deploy processes ensure efficient development and deployment.
• A variety of programming languages can be used.
• Continuousmonitoring tools, such as ELK, help identify and troubleshoot issues.
• Both REST APIs and RPC tools can be used to communicate betweenmicroservices.
• Containers are preferred over virtual machines (VMs) because they are more lightweight and
efficient.
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• DevOps teams are responsible for operations.
• Site‑reliability engineers (SREs) oversee the performance and reliability of the system.
• Distributed transactions are avoided.
• Federated security ensures the security of data and communication across multiple microser‑
vices.

• Fault‑tolerance patterns ensure that the system can continue to operate even if individual mi‑
croservices fail.

8.7.5 Microservice Design Patterns

• API gateway: Facade to fine‑granular services
• Client‑side discovery: Provided by MS chassis (e.g. spring boot)
• Server‑side discovery: Services register themselves during startup, or self registration by chas‑
sis

• Service instance per container: Scales better than VM per service
• Serverless deployment: Use of functions as a service (FaaS) to run small pieces of code in
response to specific events

• Database per service: Each microservice has its own database, with no direct access to the
databases of other microservices

• Event‑driven architecture: Programming without a stack, with changes triggered by events
• Event sourcing: Record change events in an event store
• CQRS: Separate update and idempotent read operations
• Transaction log tailing: Follow transaction log for changes
• Database triggers: Put events in events table after changes

8.8 Critical Points with Microservices

• Cross‑concerns, such as transactions, security, performance, and scalability, can be challeng‑
ing to manage in a microservice system. Site‑reliability engineers (SREs) may be responsible
for addressing these issues.

• Virtual machines (VMs) may be too large for small services with low throughput.
• Themaintenance of manymicroservices can be time‑consuming and complex.
• Monitoring can be challenging due to the large number of independent services and the diffi‑
culty in identifying correlations between them.

• Different languages and technologiesmay cause confusion and fragmentation
• There is a risk of creating new central bottlenecks, such as an event store.
• RESTmay not always be the best API model and transport for microservices.
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• Distributed commitsmust be eventually consistent to ensure that they do not get lost.

8.9 Serverless

8.9.1 Serverless Definition

• Cloud‑native platform for short‑running, stateless computation and event‑driven applica‑
tions

• Scales up and down instantly and automatically
• Charges for actual usage at a millisecond granularity
• Decouples computation and storage, scales and priced separately
• Pays for code execution instead of allocated resources
• Allows developers to focus on writing code, not infrastructure management

8.9.2 Stateless Applications

• Stateless system or component does notmaintain state or context between requests
• Each request is treated as an independent action, not influenced by previous requests
• Configuration information may be stored in classpath or persistent storage
• Function has nomemory
• Changemanagementmay be a challenge in stateless systems
• Hypercomposition (breaking a system down into smaller, independent components)may be
difficult in stateless systems

8.9.3 Issues with Serverless

• Countless small IAM rules
• Coupling with less scaleable components
• Slow cold starts
• Unclear bug handling
• Stateful functions
• Limits everywhere
• New testing concepts needed
• High costs whenwaiting for something
• Unpredictable latency due to the dynamic nature of the environment
• Lack of direct addressability of functions
• Limited support for common software patterns, such as batch processing
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• Difficulty debugging, tracing, andmonitoring functions
• Inefficient storage systems for small objects or frequent access

8.9.4 Serverless Design Patterns

• Scalable Webhook: Triggers based on external events
• Gatekeeper: Controls access to internal resources
• Internal API: Provides an interface to internal resources
• Internal Handoff: Communicates between serverless functions
• Aggregator: Gathers and processes data frommultiple sources
• Notifier: Sends notifications to external systems or users
• FIFOer: Ensures first‑in, first‑out processing of events
• Streamer: Processes data from a stream in real‑time
• Router: Routes events to the appropriate destination
• State Machine: Executes a series of steps based on the current state of an event

9 Theoretical Foundations of Distributed Systems

9.1 Overview

• Basic Concepts

– Distributed Systems Fallacies
– Latency
– Correctness and Liveness
– Time, Ordering and Failures
– The Impossibility of Consensus in Async. DS (FLP)
– The CAP Theorem

• Failures, Failure Types and Failure Detectors
• Time in Distributed Systems
• Ordering and Causality
• Algorithms for Consensus in DS
• Optimistic Replication and Eventual Consistency
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9.2 Foundational Concepts

9.2.1 The Eight Fallacies of Distributed Computing

• The network is reliable: This fallacy assumes that the network will always be available and
free of errors or failures, which is not always the case.

• Latency is zero: This fallacy assumes that communication between nodes in a distributed sys‑
tem will be instantaneous, but in reality, there is always some latency due to the time it takes
for a request to be processed and a response to be received.

• Bandwidth is infinite: This fallacy assumes that there is unlimited bandwidth available for
communication between nodes, but in reality, bandwidth can be limited by factors such as net‑
work congestion or hardware limitations.

• The network is secure: This fallacy assumes that the network is completely secure and free
from threats such as hackers or malicious software, but this is not always the case.

• Topology doesn’t change: This fallacy assumes that the topology of the network, or the way
that nodes are connected, will remain constant, but in reality, the topology can change due to
factors such as node failures or changes in network configuration.

• There is oneadministrator: This fallacy assumes that there is only onepersonor entity respon‑
sible for managing the network, but in distributed systems, there may be multiple administra‑
tors or stakeholders with different roles and responsibilities.

• Transport cost is zero: This fallacy assumes that there are no costs associated with commu‑
nication between nodes, but in reality, there may be costs such as network fees or hardware
expenses.

• Thenetwork is homogeneous: This fallacy assumes that all nodes in the network are identical
and operate in the same way, but in reality, nodes can have different hardware, software, and
configurations.

9.2.2 Analyzing Latency

• Know the long‑term trends in hardware: Latency can be influenced by the performance of
the hardware being used, so it’s important to be aware of trends in hardware development and
how they may impact latency.

• Understand theproblemofdeepqueuingnetworksand thesolutions: Deepqueuingoccurs
when there are many requests waiting to be processed, leading to longer latency. Understand‑
ing this problem and implementing solutions such as load balancing can help reduce latency.

• Know your numbers with respect to switching times, router delays, round‑trip times,
IOPS per device, and perform “back of the envelope” calculations: It’s important to have
a good understanding of the specific numbers and metrics related to latency in your system,
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such as switching times and router delays, and to perform calculations to estimate the impact
of these factors on latency.

• Understand buffering effects on latency: Buffering, or the temporary storage of data, can
impact latency by adding additional processing time. Understanding the effects of buffering
on latency can help you optimize your system tominimize this impact.

• Include the client side in your calculations: Latency is often impacted by factors on the client
side, such as the client’s hardware and network connection. It’s important to consider these
factors when calculating latency and optimizing your system tominimize it.

9.2.3 Characteristics of Distributed Systems

• High complexity: Distributed systems involve a large number of interacting agents, such as
servers, clients, andnetworkdevices,which canmake themcomplex todesign, build, andmain‑
tain.

• Partial knowledge: In distributed systems, each node or agent typically has only partial knowl‑
edge about the state of the system, the actions of other nodes, and the current time. This can
make it difficult to coordinate actions and ensure consistency across the system.

• Uncertainty: Distributed systems are prone to uncertainty due to factors such as node failures,
network delays, and changes in the system’s environment. This uncertainty can make it chal‑
lenging to predict the behavior of the system and ensure its reliability.

9.3 Consistency

9.3.1 Liveness vs. Correctness

Correctness and liveness are two important properties of distributed systems that ensure they func‑
tion as intended andmake progress.

• Correctness refers to the property that ensures that a system will not exhibit undesirable be‑
haviors, such as incorrect results or incorrect behavior. It can be thought of as the absence of
bad things happening in the system.

• Liveness, on the other hand, refers to the property that ensures that a system will eventually
make progress and achieve its intended goals. It can be thought of as the presence of good
things happening in the system.

Both correctness and liveness are based on assumptions about failures and other conditions in the
system, such as fairness and the presence of Byzantine errors. Ensuring that a distributed system has
both correctness and liveness is critical for its success.
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9.3.2 Liveness and Correctness in Practice

Here is an example of how correctness and liveness can be defined for an event‑based system:

Correctness:

• Receive notifications only if subscribed to them: This ensures that a node only receives noti‑
fications for events it is interested in.

• Received notificationsmust have been published before: This ensures that notifications are
not received before they have been published, which would lead to incorrect behavior.

• Receive a notification only atmost once: This ensures that a node does not receive the same
notification multiple times, which could lead to incorrect behavior.

Liveness:

• Start receiving notifications some time after a subscription was made: This ensures that a
node will eventually start receiving notifications after it has subscribed to them.

Failure Assumptions: Fail‑stopmodel with fairness

In this example, the system is designed to ensure correctness by limiting the notifications a node re‑
ceives to those it is subscribed to and ensuring that notifications are received only once. It is designed
to ensure liveness by ensuring that a node will eventually start receiving notifications after subscrib‑
ing. The system also makes assumptions about failures, such as the fail‑stop model with fairness,
which are used to ensure the correctness and liveness of the system.

9.3.3 Timing Models

Indistributed systems, timingmodels refer to theway that events andcommunicationbetweennodes
are synchronized. There are three main types of timing models: synchronous, asynchronous, and
partial synchronous.

• Synchronous timing models: In synchronous timing models, transmit times are strictly de‑
fined and events happen at specificmoments. Nodes in a synchronous systemcan immediately
detect when another node has crashed because the system relies on a clock to synchronize
events. Examples of synchronous systems include CPUs and other types of hardware.

• Asynchronous timingmodels: In asynchronous timingmodels, there is no exact timebetween
sending and receiving messages. Messages will “eventually” arrive, but there is no guarantee
about when. Because there are no strict timing constraints, a node in an asynchronous system
cannot tell whether another node has crashed or is simply very slow to respond. There are no
timeouts in asynchronous systems because they would require a clock.
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• Partial synchronous timing models: Partial synchronous timing models are a combination
of synchronous and asynchronous models. These systems are asynchronous, but they are en‑
hanced with local clocks that provide some level of synchronization. This is the model that is
typically used for real‑world distributed systems, as it allows for the flexibility of asynchronous
communication while still providing some guarantees about timing.

9.3.4 The Fischer, Lynch and Patterson Result

• The FLP (Fischer, Lynch, and Patterson) result is a theoretical result that shows it is impossible
to reach consensus in asynchronous distributed systems in certain circumstances.

• The result has significant implications for distributed algorithms that rely on consensus, such
as leader election, agreement, replication, locking, and atomic broadcast.

• The problem is caused by the need for a unique leader to make a decision, but the asyn‑
chronous nature of the system can lead to delays and the re‑election of new leaders, which
can indefinitely delay the decision‑making process.

• This problem affects most consensus‑based distributed algorithms and can result in non‑
terminating runs where no decision is reached.

9.4 The CAP Theorem

9.4.1 Overview

States that in the presence of network partitions, a client must choose either consistency or availabil‑
ity, but not both.

• Choosing consistency: If the client chooses consistency, they may not get an answer at all.
• Choosingavailability: If the client chooses availability, theymay receive apotentially incorrect
answer.

9.4.2 Preconditions for the CAP Theorem

• To be considered consistent, the system must ensure that all operations are atomic and lin‑
earizable, meaning that they can be thought of as occurring at a single instant in time and have
a total order.

• For a system to be considered available, it must ensure that every request received by a non‑
failing node is met with a response, and that every request terminates.

• Partition tolerance: The networkwill be allowed to lose arbitrarilymanymessages sent from
one node to another.
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9.4.3 CommonMisconceptions of the CAP Theorem

• Consistency: Many systems do not achieve a total order of requests due to the costs (latency,
partial results) involved.

• Availability: Even an isolated node with a working quorum on the other side must answer re‑
quests, breaking consistency. The node does not know that a quorum exists.

• Partition Tolerance: You cannot un‑choose partition tolerance, as it is always present. CA sys‑
tems are therefore not possible.

9.4.4 The Modern View of the CAP Theorem

• There are more failure types than just partition tolerance, such as host‑crash and client‑
server disconnect. These failures cannot be completely avoided.

• Many systems do not need linearizability, and it is important to carefully consider the type of
consistency that is needed.

• Most systems prioritize latency over consistency, with availability coming in second.
• A fully consistent system in an asynchronous network is impossible (in the sense of FLP). FLP
is much stronger than CAP.

• The architecture of the system (replication, sharding) and the abilities of the client (failover)
also have an impact on the system’s behavior.

9.4.5 PACELC

PACELC: A more complete portrayal of the space of potential consistency tradeoffs for distributed
database systems.

• In the presence of a partition (P), the systemmust trade off availability and consistency (A and
C).

• In the absence of a partition (E), the system can trade off latency (L) and consistency (C) when
running normally.

9.5 Failure

9.5.1 Technical Failures

• Network failures, such as partitioning, which can occurwhen a network is divided into smaller,
separate networks that are unable to communicate with each other.
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• CPU/Hardware failures, such as instruction failures or RAM failures, which can occur when the
hardware components of a systemmalfunction or fail.

• Operating system failures, such as crashes or reduced function, which can occur when the
operating system experiences an error or malfunction.

• Application failures, such as crashes, stopped states, or partially functioning states, which can
occur when an application experiences an error or malfunction.

Unfortunately, inmost cases there is no failure detection service that can identify when these failures
occur and allow others to take appropriate action. However, it is possible to develop a failure detec‑
tion service that could detect even partitioning and other types of failures through the use of MIBs
(Management Information Bases) and triangulation. Applications could also be designed to track
themselves and restart if necessary.

9.5.2 Failure Types

• Bohr‑Bug:

– Shows up consistently and can be reproduced. Easy to recognize and fix.

• Heisenbug:

– Shows up intermittently, depending on the order of execution.
– High degree of non‑determinism and context dependency.
– Due to complex IT environments, they are both more frequent and harder to solve.
– They are only symptoms of a deeper problem.
– Changes to softwaremaymake them disappear temporarily, butmore changes can cause
them to reappear.

– Example: Deadlock “solving” through delays instead of resource order management.

9.5.3 Failure Models

• Crash‑stop: A process crashes atomically and stays down.
• Crash‑stop with recovery: A process crashes and is down until it begins recovery, and is up
again until the next crash occurs. For consensus, at least 2f+1machines are needed (quorum).

• Crash‑amnesia: A process crashes and restarts without recollection of previous events or data.
• Failstop: A machine fails completely, and the failure is reported to other machines reliably.
• Omission errors: Processes fail to send or receive messages even though they are alive.
• Byzantine errors: Machines or parts of machines, networks, or applications fail in unpre‑
dictable ways andmay recover partially. For consensus, at least 3f+1machines are needed.
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Many protocols for achieving consistency and availabilitymake assumptions about failuremodels.
For example, transaction protocols may assume recovery behavior by its participants if the protocol
terminates.

9.5.4 Failures and Timeouts

• Timeouts are not a reliable way to detect failures in distributed systems because they can
be caused by various factors, such as short interruptions on the network, overload conditions,
and routing changes.

• Timeouts cannot distinguish between different types and locations of failures.
• Timeouts cannot be used in protocols that require failstop behavior of its participants.
• Most distributed systemsonly offer timeouts for applications to notice problems, so they donot
provide detailed information about the state of participants or membership.

• Using timeouts can result in “split‑brain” conditions, where a system behaves as if it is func‑
tioning properly but is actually experiencing a failure or malfunction.

9.5.5 Failure Detectors

A failure detector (FD) is a mechanism used in distributed systems to detect failures of processes or
machines. It is not required to be correct all the time, but it should provide the following quality of
service (QoS):

• Safety: The FD should be safe all the time, meaning it should not falsely suspect processes of
being faulty during “better” failure periods.

• Liveness: The FD should be live during “better” failure periods, meaning no process should
block forever waiting for a message from a dead coordinator.

• Accuracy: Eventually, some process x should not be falsely suspected of being faulty. When x
becomes the coordinator, every process should receive x’s estimate andmake a decision based
on it.

• Low overhead: The FD should not cause a lot of overhead, meaning it should not consume too
many resources or slow down the system.

9.6 Clocks

9.6.1 Time in Distributed Systems

In distributed systems, there is no global time that is shared across all processes. Instead, different
approaches are used to model time in these systems. These approaches include:

Felicitas Pojtinger 95



Uni Distributed Systems Summary 2023‑02‑05

• Event clock time: This is a logical model of time that represents the order of events within a
single process.

• Vector clock time: This is a logical model of time that represents the order of events between
multiple processes.

• TrueTime: This is a physical model of time that represents the interval of time between events.
• Augmented time: This is a combination of physical and logical models of time that takes into
account both the interval of time between events and the order of events.

Logical time is modeled as partially ordered events within a process or between processes. It is used
to represent the relative order of events in a distributed system, rather than the actual clock time
at which they occurred.

Causal meta‑data in the system can also order the events properly.

9.6.2 Consistent vs. Inconsistent Cuts

• Consistent cuts: These cuts produce causally possible events, meaning that events occur in a
logical and possible order.

• Inconsistent cuts: These cuts produce events that arrive before they have been sent, resulting
in an illogical or impossible order.

9.6.3 Event Clocks (Logical Clocks)

• Event clocks, also known as logical clocks, are systems for ordering events within processes
according to a chosen causal model and granularity.

• Eventsarepartiallyorderedbasedontheorder inwhich theyoccur. The timebetweenevents
is a logical unit of time that has no physical extension.

• Events delivered through messages can be used to relate the processes and their times to the
events. The external order of these events is also a partial order of events between processes
(for example, the event “send(p1,m)” occurs before the event “recv(p2,m)”).

• The value of the logical clock is updated to the maximum of the current value plus one or
the received value.

9.6.4 Lamport Logical Clock

• The Lamport logical clock counts events and creates an ordering relation between them.
These counters can be used as timestamps on events.

• The ordering relation captures all causally related events, but it also includes many unrelated
(concurrent) events, which can create false dependencies.

Felicitas Pojtinger 96



Uni Distributed Systems Summary 2023‑02‑05

9.6.5 Vector Clocks

• Vector clocks are transmitted withmessages and compared at the receiving end.
• If, for all positions in two vector clocks A and B, the values in A are larger than or the same as
the values from B, we say that Vector Clock A dominates B.

• This can be interpreted as potential causality to detect conflicts, as missedmessages to order
propagation, etc.

9.6.6 Physical Interval Time (TrueTime)

• TrueTime works by using time servers to check for rogue clocks, which are clocks that are not
synchronized with the correct time.

• The error in TrueTime is typically in the range of 6milliseconds.

9.6.7 Hybrid Clocks

Hybrid clocks are systems that combine elements of both logical and physical models of time in
order to address the limitations of each approach. There are several reasons why hybrid clocks may
be used in distributed systems:

• In large distributed systems, such as those spanning multiple data centers across the world,
vector clocks can become too large to maintain efficiently. Hybrid clocks can be used to re‑
duce the size of the clocks while still maintaining an accurate ordering of events.

• Physical interval time, such asTrueTime, requires that reads andwriteswait until the interval
time is over on all machines. This can be inefficient in some cases, and hybrid clocks can be
used to allow for more flexibility in terms of when reads and writes can occur.

9.6.8 Ordering in Distributed Event Systems

• FIFO (first‑in, first‑out) ordering: This refers to the requirement that a component must re‑
ceive notifications in the order in which they were published by the publisher.

• Causal ordering: This refers to the requirement that events must be ordered based on their
causal relationships, as defined by the system.

• Total ordering: This refers to the requirement that events must be ordered in a specific way,
such that no other component in the system is allowed to receive an event before a preceding
event has been received. One component may be responsible for deciding the global order of
events in this case.
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9.7 Consensus

9.7.1 Overview

Consensus is aprocess usedby a groupof processes to reach agreement on a specific value, based
on their individual inputs. The objective of consensus is for all processes to decide on a value v that is
present in the input set.

• Termination: Every correct process eventually decides on some value.
• Validity: If a process decides on a value v, then v was proposed by some process.
• Integrity: No process decides on a value more than once.
• Agreement: No two correct processes decide on different values.

9.7.2 Algorithms for Consensus

These protocols offer trade‑offs in terms of correctness, liveness (availability and progress), and per‑
formance:

• Two‑Phase Commit (2PC): This algorithm is used to ensure that a group of processes all com‑
mit to the same decision. It involves two phases: a prepare phase, in which the processes pre‑
pare to commit to a decision, and a commit phase, in which they actually commit to the deci‑
sion.

• Static Membership Quorum: This algorithm is based on the concept of quorum, which refers
to aminimumnumber of processes thatmust be present in order to reach a decision. The static
membership quorum algorithm is used to achieve consensus in systemswith a fixed number of
processes.

• Paxos: This algorithm is used to achieve consensus in distributed systemswith adynamicmem‑
bership. It involves multiple rounds of voting in order to reach a decision.

• Raft: This algorithm is similar to Paxos, but it is designed to be easier to understand and imple‑
ment.

• DynamicGroupMembership: This class of algorithms is used to achieve consensus in systems
with a dynamic membership. These algorithms include virtual synchrony and multicast‑based
approaches.

• Gossip Protocols: These algorithms are used to disseminate information between processes in
adistributed system. They canbeused toachieve consensusbyallowingprocesses to exchange
information and reach agreement on a decision.
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9.7.3 Two‑Phase Commit (2PC)

Steps:

1. Preparation phase: In this phase, the processes prepare to commit to a decision. Each pro‑
cess sends a “prepare to commit” message to a coordinator process, which is responsible for
coordinating the decision‑making process.

2. Decision phase: Once all the processes have prepared to commit, the coordinator process
sends a “commit”message to all theprocesses. Thismessage instructs theprocesses to commit
to the decision.

3. Confirmationphase: Each process sends a “commit confirmation”message to the coordinator
process, indicating that it has successfully committed to the decision.

4. Finalization phase: Once all the processes have confirmed that they have committed to the
decision, the coordinator process sends a “commit complete” message to all the processes, in‑
dicating that the decision has been successfully made.

Example:

1. Imagine that there are three processes in a distributed system: A, B, and C.
2. The coordinator process is A.
3. The processes are deciding whether to commit to a new software update.
4. In the preparation phase, A sends a “prepare to commit” message to B and C.
5. B and C send “prepare to commit” messages back to A.
6. In the decision phase, A sends a “commit” message to B and C.
7. In the confirmation phase, B and C send “commit confirmation” messages back to A.
8. In the finalization phase, A sends a “commit complete”message to B and C, indicating that the

decision to commit to the software update has been successfully made.

Liveness and Correctness:

• The two‑phase commit protocol (2PC) allows for atomic (linearizable) updates to bemade by
participating processes.

• 2PC is considered relatively expensive in terms of latency due to the requirement for a persis‑
tent log at each participant.

• A crash failure of the coordinator or a participant can halt or disrupt the execution of 2PC.
• If everything goes as planned, 2PC has a clear and easy‑to‑understand semantic for applica‑
tion developers.

9.7.4 Quorum‑Based Consensus

Steps:
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1. A decision is proposed by one of the processes in the distributed system.
2. Each process in the system votes on the proposed decision.
3. The votes are counted and checked against the quorum requirement. The quorum require‑

ment is theminimumnumber of votes thatmust be received in favor of the decision in order for
it to be approved.

4. If the quorum requirement has beenmet, the decision is considered to have been approved.
5. The processes move forward with implementing the decision.

Example:

1. A group of five processes in a distributed system (A, B, C, D, and E) are deciding whether to
commit to a new software update.

2. Process A proposes the decision to update the software.
3. Processes B, C, D, and E all vote on the proposed decision.
4. The votes are counted and checked against the quorum requirement, which is set at three

votes.
5. Since aquorumof three votes has been received in favor of the decision, it is considered tohave

been approved.
6. The processes move forward with implementing the software update.

Liveness and Correctness:

• Quorum‑based consensus protocols (QP) allow for atomic (linearizable) updates to be made
by participating processes, but this depends on the type of implementation being used (e.g.,
whether read quoras are used).

• QPare known tobe relativelyexpensive in termsof latency, as even simple readsmay require
a quorum for consistency. To improve performance, many QP systems use a leader‑based
approach, which involves routing client requests through a designated leader process.

• Leader crashes are usually handled through the use of leases, which can cause delays.
• In the case of a crash failure,QP can continue as long as a quorum is still possible.
• Network partitions may cause the system to either respond with all non‑failing nodes (which
may sacrifice consistency) or to stop responding to requests fromminority nodes (which may
sacrifice availability).

• QP offer a reliable and efficient method for achieving consensus in distributed systems, but
they also come with some trade‑offs in terms of performance and fault tolerance.

9.7.5 Paxos

Steps:

Felicitas Pojtinger 100



Uni Distributed Systems Summary 2023‑02‑05

1. Prepare (Phase 1a):

• The Proposer (also known as the leader) selects a proposal number N and sends a Prepare
message to a quorum of Acceptors.

2. Promise (Phase 1b):

• If the proposal number N is larger than any previous proposal, the Acceptors promise not to
accept proposals less than N and send the value they last accepted for this instance to the
Proposer.

• If the proposal number is not larger, a denial is sent.

3. Accept! (Phase 2a):

• If the Proposer receives responses from a quorum of Acceptors, itmay choose a value to be
agreed upon.

• If any of the Acceptors have already accepted a value, the leader must choose a value from this
set. Otherwise, the Proposer is free to propose any value.

• The Proposer sends an Accept! message to a quorum of Acceptors with the chosen value.

4. Accepted (Phase 2b):

• If theAcceptor receivesanAccept! message for aproposal it haspromised, it accepts thevalue
and sends an Acceptedmessage to the Proposer and every Learner.

Example:

• Let’s say there are 5 replicas in the Paxos system: A, B, C, D, and E.
• A client wants to update the value of a shared key‑value store from “apple” to “banana”.

1. Prepare (Phase 1a):

• The Proposer (also known as the leader) selects a proposal number N and sends a Preparemes‑
sage to a quorum of Acceptors (in this case, a quorum is defined as 3 or more replicas).

• The message includes the proposal number N and the value “banana” that the client wants to
update the key‑value store to.

• The Acceptors respond to the Prepare message with either a Promise message or a Deny mes‑
sage.

2. Promise (Phase 1b):

• If an Acceptor receives a Prepare message with a proposal number N that is higher than any
previous proposal number it has seen, it sends aPromisemessage to the Proposer and includes
the value it last accepted for this instance (if it has accepted a value in the past).
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• If the proposal number N is not higher than any previous proposal number, the Acceptor sends
a Deny message.

3. Accept! (Phase 2a):

• If the Proposer receives Promise messages from a quorum of Acceptors, it may choose a value
to be agreed upon.

• If any of the Acceptors have already accepted a value, the Proposer must choose a value from
this set. Otherwise, the Proposer is free to propose any value.

• The Proposer sends an Accept! message to a quorum of Acceptors with the chosen value.

4. Accepted (Phase 2b):

• If an Acceptor receives an Accept! message for a proposal it has promised, it accepts the value
and sends an Accepted

9.7.6 Raft

RAFT is a distributed consensus protocol that allows a group of processes (called “replicas”) to agree
on a value (“decide”) in the presence of failures. RAFT is divided into three distinct roles: Leader,
Follower, and Candidate.

The protocol consists of the following steps:

1. Leader Election:

• When a replica starts up or its leader fails, it becomes a Candidate and initiates an election by
sending RequestVote messages to all other replicas.

• If a Follower receives a RequestVote message from a Candidate with a higher term, it responds
with its vote and updates its term tomatch the Candidate’s term.

• If a Candidate receives a quorum of votes (more than half of the replicas), it becomes the
Leader and sends AppendEntries messages to all other replicas to replicate its log.

2. Log Replication:

• The Leader sends AppendEntries messages to all other replicas to replicate its log.
• If a Follower’s log ismissing an entry preceding the one in the Leader’s message, it responds
with amissing entry error.

• If the Follower’s log is up‑to‑date and the Leader’s entry is valid, the Follower appends the
entry and responds with a success message.

• If the Leader receives a success message from a quorum of replicas, it updates its commit
index and sends a Commitmessage to all other replicas to apply the committed entry to their
state machines.
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3. State Machine Update::

• If a replica receives a Commit message, it applies the committed entry to its state machine
and responds with an Applymessage to the Leader.

• If theLeader receivesanApplymessage fromaquorumof replicas, it updates its commit index
and sends an Applymessage to all other replicas.

9.8 Broadcasting

9.8.1 Atomic Broadcast Conditions

A distributed algorithm that guarantees correct transmission of a message from a primary process
to all other processes in a network or broadcast domain, including the primary.

It satisfies the following conditions:

• Validity: If a correct process broadcasts a message, then all correct processes will eventually
deliver it

• Uniform Agreement: If a process delivers a message, then all correct processes eventually de‑
liver that message

• Uniform Integrity: For any message m, every process delivers m at most once, and only if m
was previously broadcast by the sender of m

• Uniform Total Order: If processes p and q both deliver messages m andm0, then p delivers m
before m0 if and only if q delivers m before m0

It is widely used in distributed computing for group communication and defined as a reliable broad‑
cast that satisfies total order.

9.8.2 Atomic Broadcast Protocol

Data:

• Epoch (e): The duration of a specific leadership
• View (v): Definedmembership set that lasts until an existing member leaves or comes back
• Transaction counter (tc): Counts rounds of execution, such as updates to replicas

Phases:

1. Leader election/discovery: Members decide on a new leader and form a consistent view of
the group.
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2. Synchronization/recovery: Leader gathers outstanding, uncommitted requests recorded at
members and updatesmembersmissing certain data until all share the same state.

3. Working: Leader proposes new transactions to the group, collects confirmations, and sends
out commits.

• Frequent leader changes can cause overhead and may be a potential denial of service. It
is important to consider latency on the leader node when implementing an atomic broadcast
protocol.

• Paxos, Raft etc. are Atomic Broadcast Protocols!

9.8.3 Gossip Protocols

Gossip protocols are a class of distributed algorithms that rely on randomly chosen pairs of nodes
in a network to exchange information about the state of the system. They are typically used for group
membership, failure detection, and dissemination of information.

There are several key characteristics of gossip protocols:

• Randomized: Gossip protocols rely on randomly chosen pairs of nodes to exchange informa‑
tion, which helps to reduce the risk of overloading any particular node.

• Scalability: Gossip protocols scale well in large, distributed systems because they only require
communication with a few nodes at a time.

• Fault tolerance: Gossip protocols are designed to tolerate failures and can continue to operate
even if some nodes go down.

• Asynchronous: Gossip protocols do not rely on a central authority or global clock, so they can
operate asynchronously in a distributed system.

9.8.4 DWAL

A DWAL (Distributed Write‑Ahead‑Log) is a data structure that is used to ensure that updates to a dis‑
tributed system are stored in a way that allows them to be recovered in case of system failure. It is a
type of write‑ahead log, which means that updates are written to the log before they are applied to
the system’s state. This allows the updates to be replayed in the correct order after a system failure.

9.8.5 Design Components of DWALs

• Global visibility: Replicated state should be visible to all processes in the system. This can
be achieved through the use of atomic broadcast or other consensus protocols to ensure that
all processes have a consistent view of the system state.
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• Consensus protocol: A consensus protocol such as Paxos or Raft is used to ensure that all pro‑
cesses agreeon theorder of updates to the replicated state. This ensures that all processes have
a consistent view of the system state and reduces the risk of conflicts or data loss.

• Majority decisions: In a consensus protocol‑based system, majority decisions are used to en‑
sure that the system can make progress even in the presence of failures. This means that a
majority of processes must agree on the order of updates to the replicated state before they
can be applied.

• Groupmembership: In order to ensure that the DWAL can function properly, it is important to
have amechanism in place formaintaining an up‑to‑date view of themembership of the group
of processes.

• Message order and latency hiding: To ensure that the DWAL can function effectively, it is im‑
portant to ensure that updates are delivered to all processes in a consistent order.

9.9 Replication

9.9.1 Properties of Replication Models

• Who is responsible for updates: Single master or multiple masters?
• What is being updated: State transfer or operation transfer?
• How updates are ordered
• Conflict detection and resolution
• Method for updating replica nodes
• Guarantees for divergence

9.9.2 Single‑Leader Replication

Steps:

1. Client sends x=5 to Node1 (master)
2. Master updates node 2 and node 3 (followers)
3. Client receives changed value (or old value; due to replication lag)

Advantages:

• Ordered updates
• Efficient caching
• Highly available reads

Disadvantages:
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• Replicas may be out of syncwith the master
• Leader crashmay cause problems
• Followersmay take a while to take over in case of leader failure
• Not suitable for critical resources such as primary keys

9.9.3 Eventually Consistent Reads

Eventual consistency model: Allows for a certain level of lag between updates to be propagated to
all replicas

Steps:

1. Client updates value on Master‑Replica node
2. Master‑Replica eventually propagates update to Slave replica
3. Client performs a stale read from client node, potentially returning outdated value

9.9.4 Multi‑Master Replication

Multi‑Master Replication (MMR) is a type of replication in whichmultiple servers can accept write
requests, allowing any server to act as amaster. This means that updates can bemade to any server,
and the changes will be replicated to all other servers in the network. MMR can be used to improve
the availability and scalability of asystem, as it allows updates to bemade to any server and allows
multiple servers to handle write requests.

It also introduces the possibility of conflicts, as multiple servers may receive updates to the same
data simultaneously. To resolve these conflicts, MMR systems typically use conflict resolution algo‑
rithms (last writer wins, keeping different versions, anti‑entropy backgroundmerge/resolve) or allow
the user to manually resolve conflicts.

Steps:

1. Client 1 writes x=5 to Node 1 (master)
2. Client 2 writes x=10 to Node 2 (master)
3. The masters detect a conflict

Conflict types:

• Update conflict: Two identical rows changed on two servers
• Uniqueness conflict: Two identical primary (uniqe) keys added in same table on two servers
• Delete conflict: During delete of a row the same row is changed on a different server.
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9.9.5 Leaderless Quorum Replication

Write:

• In a leader‑less (quorum) replication system, the client decides howmanymachines towrite
toor read fromusing the formulaW+R>N,whereN is the number ofmachines in the replication
group.

• Without a designated leader, quorum systemsmay suffer from long tail effects.
• If a quorum is not available, the client can choose towrite to a “sloppy quorum” and risk the
write being lost.

• Without anti‑entropy, there is a high risk of partial writes in the system, which can lead to
inconsistencies and can be difficult to clean up.

Read:

• Some systemsmay detect inconsistencies during a read operation.
• These systems can either automatically perform a cleanup (e.g. using version numbers to
return the correct value) or offer both values for the client to choose from.

9.9.6 Session Modes of Asynchronous Replication

The following guarantees seem to enable “sequential consistency” for a specific client, meaning
that the program order of updates from this client is respected by the system. Clients can track these
guarantees using vector clocks:

• “Readyourwrites” (RYW)ensures that the contents read froma replica includepreviouswrites
by the same user.

• “Monotonic reads” (MR) ensures that successive reads by the same user return increasingly
up‑to‑date contents.

• “Writes follow reads” (WFR) ensures that a write operation is accepted only after writes ob‑
served by previous reads by the same user are incorporated in the same replica.

• “Monotonic writes” (MW) ensures that a write operation is accepted only after all write opera‑
tions made by the same user are incorporated in the same replica.

We can also derive session anomalies from this:

• Non‑monotonic reads: Reads that do not return increasingly up‑to‑date contents.
• Non‑monotonic writes: Write operations that are not accepted in the order that they were
made by the same user.

• Non‑monotonic transactions: Transactions that do not preserve the order in which they were
made by the same user.
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• Not‑reading‑my‑writes: Reads that do not include previous writes by the same user.

9.9.7 Global Modes of Replication

There are multiple different modes to choose from:

• Strong consistency ensures that all previous writes are visible, and is characterized by the
following properties:

– Ordered: Writes are accepted in the order that they were made.
– Real: All writes are visible.
– Monotonic: Write operations are accepted only after all previous write operations made
by the same user are incorporated in the same replica.

– Complete: All writes are included.

• Consistent prefix ensures that an ordered sequence of writes is visible, and is characterized
by the following properties:

– Ordered: Writes are accepted in the order that they were made.
– Real: All writes are visible.
– X latest missing: Some of the latest writes may bemissing.
– Snapshot isolation‑like: The system behaves like snapshot isolation, where writes made
by a transaction are not visible to other transactions until the transaction is committed.

• Bounded staleness ensures that allwrites older than X or every write except the last Y are
visible, and is characterized by the following properties:

– Ordered: Writes are accepted in the order that they were made.
– Real: All writes are visible.
– X latest missing: Some of the latest writes may bemissing.
– Monotonic increasing due to bound: Write operations are accepted only after all previ‑
ous write operationsmade by the same user are incorporated in the same replica, but the
bound on staleness allows for some deviation from strict monotonicity.

• Eventual consistency ensures that a subset of previouswrites is visible, and is characterized
by the following properties:

– Unordered: Writes may not be accepted in the order that they were made.
– Un‑real: Some writes may not be visible.
– Incomplete: Some writes may bemissing.

Each of them have their own trade‑offs:
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• Strong consistency:

– Consistency: Excellent
– Performance: Poor
– Availability: Poor

• Eventual consistency:

– Consistency: Poor
– Performance: Excellent
– Availability: Excellent

• Consistent prefix:

– Consistency: Okay
– Performance: Good
– Availability: Excellent

• Bounded stalenes:

– Consistency: Good
– Performance: Okay
– Availability: Poor

• Monotonic reads:

– Consistency: Okay
– Performance: Good
– Availability: Good

• Readmywrites:

– Consistency: Okay
– Performance: Okay
– Availability: Okay

10 Distributed Services and Algorithms I

10.1 Overview

1. Distributed Services

1. Replication, Availability and Fault‑Tolerance
2. Global Server Load Balancing for PoPs
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2. Typical Cluster Services

1. Fail‑over and Load‑Balancing
2. Directory Services
3. Cluster Scheduler (neu)

3. Distributed Operating Systems
4. Example Services and Algorithms

1. Distributed File Systemwith replication andmap/reduce
2. Distributed (streaming) Log
3. Distributed Cache with consistent hashing
4. Distributed DB with sharding/partitioning functions
5. Distributed Messaging with event notification and gossip

10.2 Types of Distributed Services

10.2.1 What is a Distributed Service?

Function provided by a distributedmiddlewarewith:

• High scalability
• High availabilit

10.2.2 Services and Instances

• Distributed systems:

– Comprised of services, such as applications, databases, caches, etc.
– Services aremade up of instances or nodes, which are individually addressable hosts
(physical or virtual)

• Key observation:

– Unit of interaction is at the service level, not the instance level
– Concerned with logical groups of nodes, not specific instances
– Example: Interacting with a database server, rather than a specific database instance.

10.2.3 Core Distributed Services

• Finding Things
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– Name Service
– Registry
– Search

• Storing Things

– Various databases
– Data grids
– Block storage, etc.

• Events Handling and asynchronous processing: Queues
• Load Balancing and Failover
• Caching Service
• Locking Things and preventing concurrent access: Lock service
• Request scheduling and control: Request multiplexing
• Time handling
• Providing atomic transactions: Consistency and persistence
• Replicating Things: NoSQL DBs
• Object handling: Lifecycle services for creation, destruction, relationship service, etc.

10.3 Availability

Is defined as:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑈𝑝𝑡𝑖𝑚𝑒𝑎𝑔𝑟𝑒𝑒𝑑 𝑢𝑝𝑜𝑛−𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑎𝑛𝑑 𝑢𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑
𝑈𝑝𝑡𝑖𝑚𝑒𝑎𝑔𝑟𝑒𝑒𝑑 𝑢𝑝𝑜𝑛

Continuous availability does not allow for planned downtime.

10.3.1 Typical Hardware Causes for Downtime

• Overheating
• PDU failure
• Rack‑move
• Network rewiring
• Rack failures
• Racks go wonky
• Network maintenances
• Router reloads
• Router failures
• Individual machine failures
• Hard drive failures
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10.3.2 Availability through Redundancy

Across groups of resources:

• Multi‑site data center
• Disaster recovery
• Scalability

Within a group of resources:

• High availability (HA)
• Clustering
• Centralized administration (CA)
• Automatic failover (CO)
• Scalability
• Data replication
• Quorum algorithms (require multiple machines)

Between two resources:

• High availability (HA)
• Centralized administration (CA)
• Automatic failover (CO)
• Load distribution to prevent overload in case of failure

For an individual resource:

• Single point of failure (SPOF)
• Easy updates
• Maintenance problems
• Simple reliability
• Limited vertical scalability

10.3.3 3 Copy Disaster Recover Solution

• Maintains 3 copies of data/resources with at least 2 in different locations
• Enables quick switchover in case of disaster for business continuity
• Provides high availability and protects against data loss.
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10.4 Load Balancing

10.4.1 Serial vs. Redundant Availability

• Serial chain of components:

– Availability decreases withmoremembers in the chain
– Individual components need higher availability

• Redundant, parallel components:

– Unavailability of each component ismultiplied and subtracted from1 todetermineoverall
availability

– Only one component needs to be up to maintain availability.

10.4.2 Global Server Load Balancing

• DNS Round Robin:

– Simple load balancing technique that distributes traffic to multiple servers based on the
client’s DNS query

– Little mitigation in case of problems like overload, failure, etc.
– Clients may disregard TTL settings
– Takes approximately 15 minutes to drain traffic from troubled servers.

• BGP Anycast:

– Uses BGP routing to direct clients to the nearest available server
– BGPdoesnot consider link latency, throughput, packet loss, etc. in selecting thebest route
– Withmultiple routes to the destination, BGP simply selects the one with the least number
of hops

– Troubleshooting can be demanding.

• Geo‑DNS:

– Uses the client’s geographical location to determine the closest server for traffic distribu‑
tion

– Relies on the accuracy of the DNS provider’s IP and location guesswork
– TTL setting may not accurately reflect the time‑to‑live of cached information.

• Real User Measurements (RUM):

– Uses real‑time data from end‑user devices to dynamically adjust traffic distribution for op‑
timal performance.
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10.4.3 Failover with Virtual IPs

Failover with one virtual IP:

• DNS points only to one Virtual IP (VIP)
• In case of a server failure, client sessions are lost but they can establish a new session on re‑
connect

• No changes in DNS are required, avoiding the potential issues of flushes and timeouts

Multi‑site failover:

• A combination of geo‑aware DNS and a Load Balancer/Fail‑over front‑server
• Requests can be re‑routed to different locations in case of a server failure
• May still have the limitations and issues associated with geo‑aware DNS.

10.4.4 Failover, Load Balancing and Session State

• StickySessions: Keeps session state ona single server, offers advantageswith anon‑replicated
system of records but limited in terms of fail‑over and load‑balancing options.

• SessionStorage inDB: Session state is stored in adatabase, offers better scalability and fail‑over
options compared to sticky sessions.

• Session Storage in Distributed Cache: Session state is stored in a distributed cache, provides
better performance and scalability compared to database storage, but still with fail‑over op‑
tions.

Today: Stateless servers with state in DB are the norm, but sticky sessions are still useful because
records need to be replicated.

Compromise: Replicate sessions between pairs of servers, then enable switching between them as
failovers

10.4.5 P2P Load Balancing

• Evaluator Functions: Access server stats in shared memory and determine the outcome of a
request, whether it is handled by its own server, redirected, or proxied.

• Server Stats: Various metrics such as CPU usage, number of requests, memory usage, etc.,
are replicated in sharedmemory and used by evaluator functions tomake load‑balancing deci‑
sions.

• Server Stat Replication: The replication of server stats is done throughmulticast.
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10.5 Service Organization

10.5.1 Requirements of Distributed Name/Directory Systems

Functional Requirements:

• Re‑bind/resolvemethods to store name/value pairs
• Query Interface
• Name Aliases for multiple logical hierarchies (DAG‑structured name space)
• Composite Names (path names)
• Location Independence by separating address and location of objects
• Sound security system to ensure access to objects based on names.

Non‑Functional Requirements:

Definition: Non‑Functional Requirements are necessary functions of a system that ensure speed,
reliability, availability, security, etc. Many systems fulfill functional requirements but fail to meet
non‑functional requirements.

• Persistent Name/Value Combinations (retainmapping in case of a crash)
• Transacted Manipulation (all‑or‑nothing handling during application installation)
• Federated Naming Services to combine different naming zones
• Fault tolerance through replication for availability
• Fast lookup through clustering, with slower writes and client‑side caching support to reduce
communication costs

10.5.2 Design of Distributed Name/Directory Systems

Name Space:

• The company name space organization is a design and architecture concern.
• SystemManagement enforces rules, policies, and controls changes.
• Different machines host parts of the name space (zones).

Naming Service:

• Interfaces (naming service, factoryfinder, factory, account) allow administrators to hide ver‑
sions/implementations from clients.

• Finders in a remote environment support object migration and copying.
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10.5.3 Examples of Naming Services

• Domain Name System (DNS)
• X.500 Directory
• Lightweight Directory Access Protocol (LDAP)
• CORBA Naming Service
• Java Registry
• J2EE JNDI (mapped to CORBA Naming Service)

10.5.4 Google vs. Amazon

Amazon:

Services

• Storage Services:

– S3 (huge storage capacity)
– RDS
– Aurora
– Mongo

• Computation Services: EC2 (Virtual Machines)
• Queuing Services
• Load‑balancing services
• Elastic map reduce
• Cloudfront (fast cache)
• Lambda
• Stepfunctions
• AI framework services

Google:

Products

• Scheduling Service
• Map/Reduce Execution Environment
• F1 NewSQL DB
• Spanner Replicated DB
• BigTable NoSQL Storage
• Distributed File System
• Chubby Lock Service
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• Graph Processing and SQL:

– Pregel
– Percolator
– Dremel

• Dapper (distributed locking)
• Google Compute Platform

10.5.5 Best Practices for Designing Services

• Keep services independent
• Measure services
• Define SLAs and QoS for services
• Allow agile development of services
• Allow hundreds of services, aggregate them on special servers
• Avoidmiddleware and frameworks that force patterns
• Keep teams small and organized around services
• Manage dependencies carefully
• Create APIs for customer access to services

10.6 Caching

10.6.1 CQRS (Command Query Responsibility Segregation)

• Separates the responsibilities of reading data (queries) and modifying data (commands)
into separate objects or services.

• Improves scalability and performance by allowing reads and writes to be optimized sepa‑
rately.

• Promotes event‑driven architecture by allowing commands to trigger domain events.
• Simplifies domain modeling by reducing the complexity of aggregates.
• Increases consistency by using separate models for reads and writes.
• Reduces the coupling between the read and write sides of the system.

10.6.2 Requirements of Caching Services

• Scalablewith ability to addmachines
• Avoid “thundering herds” due to placement changes
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• Supports replication of cache entries
• High performance required
• Optional disk backup support
• Supports various storagemediums, from RAM to SSD
• Supports different cache replacement policieswith caution.

10.6.3 Handling Changing Machine Counts in Caching Services

• Problem: Changing Machine Count
• Solution: Consistent Hashing (Ring)
• Machines aremapped into a ring and their position determines the key‑space they are re‑
sponsible for.

• Machines can be assignedmultiple virtual positions.

10.6.4 Consistent Hashing Algorithms

Simple Consistent Hashing Algorithm:

• URLs and caches aremapped to points on a circle using a standard hash function.
• URL assigned to closest cache in clockwise direction.
• Adding a new cache only reassigns the closest URLs to it, items don’t move between existing
caches.

Dynamo Consistent Hashing Algorithm:

• Separates placement and partitioning.
• Uses virtual nodes assigned to real machines for more flexibility.
• Virtual node is responsible for multiple real nodes.
• Improved load balancing due to additional indirection.

10.6.5 Cache Patterns

Pull:

• Occurs during request time
• Concurrent misses and client crashes can result in outdated caches
• Complicated handling of concurrent misses and updates
• Can be slow and dangerous for backends

Push:
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• Automated push updates cached values
• Should only be used for values that are always needed

Pre‑warmed:

• The system loads the cache before the application starts serving clients
• Used for big applications with pull caches to avoid boot issues

General consideration: Be aware of LRU or clocked invalidations as cache is mission critical.

10.6.6 Cache Design Considerations

• Kinds of information fragments
• Lifecycle of fragments
• Validity of fragments
• Effects of fragment invalidation
• Dependencies between fragments, pages, etc.

10.7 Events

10.7.1 Local vs. Distributed Events

Local:

• Observer updates sent on one thread
• If observer doesn’t return, mechanism stops
• If observer calls back to observed during update call, deadlock can occur
• Solution doesn’t scale and is not reliable (e.g. observer crashes result in lost registrations)
• Does not work for remote communication

Distributed:

• Various combinations of push and pull models possible
• Receivers can install filters using a constraint language to filter content (reduces unwanted no‑
tifications)

10.7.2 Asynchronous Event‑Processing

• Publisher and subscriber communicate through interactionmiddleware
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• Used to decouple components and asynchronous sub‑requests from synchronous main re‑
quests (so that multiple fast tasks can run parallel to a slowmain task)

• Implemented as Message‑Oriented‑Middleware (MOM) or socket‑based communication
library

• Can be implemented in broker‑less or brokeredmode.

10.7.3 Features of Event‑Driven Interaction

• Basic Event: Any entity can send and receive events without restrictions or filtering.
• Subscription: A receiver can subscribe to specific events, making event deliverymore efficient.
• Advertisement: The sender informs receivers about possible events, reducing the need for
broadcasting.

• Content‑Based Filtering: The sender, middleware, or receiver can apply filtering based on
event content.

• Scoping: Administrative components can manipulate event routes, enabling invisible commu‑
nication between components.

10.7.4 Types of Message Oriented Middleware (MOMs)

Centralized Message‑Oriented‑Middleware:

• Collects all notifications and subscriptions in one central place, enabling easy eventmatching
and filtering

• Has a high degree of control and no security/reliability issues on clients
• Can create scalability and single‑point‑of‑failure problems

Clustered Message‑Oriented‑Middleware:

• Provides scalability at higher communication costs
• Has lots of routing/filter‑tables at cluster nodes, making filtering and routing of notifications
expensive

Simple P2P Event Libraries:

• Local libraries are aware of each other, but components are de‑coupled
• Broker‑less architecture is faster than brokered ones
• Does not provide at‑most‑once semantics or protection against message loss
• Guarantees atomicity and possibly FIFO
• Examples include ZeroMQ, Aaron, and Nanomsg
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Flooding Protocols:

• Notifications travel towards subscriptions, which are only kept at leaf brokers
• Advantages include that subscriptions become effective quickly, and notifications are guar‑
anteed to arrive everywhere

• Price ismany unnecessary notifications to leaf nodes without subscribers

10.7.5 ZeroMQ

• Brokerless socket library for messaging, with message filtering
• Connection patterns include pipeline, pub/sub, andmulti‑worker
• Various transports, including in process, across local process, acrossmachines, andmulticast
groups

• Message‑passing process modelwithout the need for synchronization
• Multi‑platform andmulti‑language support
• “Suicidal snail” fail‑fast mechanism to kill slow subscribers

10.8 Sharding

10.8.1 Horizontal vs. Vertical Sharding

Horizontal: Per (database) row, e.g. first 100 users are in shard 1, 200 in shard 2 etc.

Vertical: Per (database) column, e.g. profile and email is in shard 1, photos and messages in shard 2
etc.

10.8.2 Sharding Strategies

• Allow adding heterogenous hardware in the future
• Sharding should not make app code unstable
• Sharding should be transparent to the app
• Sharding and placement strategies should be separate

10.8.3 Horizontal Sharding Functions

Algorithms applied to the key (often: user ID) to create different groups (shards):

• Numerical range: users 0‑100000, 100001‑200000, etc.
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• Time range: 1970‑80, 81‑90, 91‑2000, etc.
• Hash andmodulo calculation
• Directory‑basedmapping using a meta‑data table for arbitrary mapping from key to shard

10.8.4 Consequences of Sharding

• Nomore SQL JOINs, leading to lots of copied data
• Increased need for partial requests for data aggregation
• Expensive distributed transactions required for consistency (if needed)
• Vertical sharding distributes related data types from one user, while horizontal sharding dis‑
tributes related users from each other (bad for social graph processing)

• SQL limitations due to mostly key/value queries and problems with automatic DB‑Sequences
• Every change requires corresponding application changes

10.9 Relationships

10.9.1 Overview

• Within the database, referential integrity rules protect containment relationships
• No equivalent in object space
• No protection in distributed systems

For example when an employee leaves:

• All rights are cancelled
• Disc‑space is archived and erased
• Databases for authentication and application‑specific DBs are updated
• Badge no longer works
• All equipment has been returned

10.9.2 Functional Requirements of Relationship Services

• Definition of relations between objectswithout modifying those objects
• Support for different types of relations
• Ability to create graphs of relations
• Ability to traverse relationship graphs
• Support for reference and containment relations
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10.9.3 Why Relationship Services Failed

The good:

• Powerfulmodeling tool
• Helps with creation, migration, copy, and deletion of composite objects
• Maintains referential integrity

The bad:

• Tends to createmany small server objects
• Performance impact
• Not supported by many CORBA vendors for a long time
• EJB only supported with local objects in the same container.

11 Distributed Services and Algorithms II

11.1 Overview

• Classic (ACID) distributed consistency includes:

– Distributed 2P locking
– Distributed 2PC consensus

• ACID 2.0 eventual (coordination‑free) consistency includes:

– CAP and its children, CALM, CRDTs, etc.
– Distributed replication (e.g. Cassandra)
– CALM (Bloom) consistency
– CRDTs (Conflict‑free Replicated Data Types)

• Distributed Coordination (e.g. Chubby, ZooKeeper) includes:

– Distributed consensus protocols
– Cluster scheduler (e.g. Borg)

11.2 Problemswith Classic Concurrency

11.2.1 Why Truth is Expensive

• Strong consistency is discouraged.
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• Coordination and distributed transactions slow down the process and affect availability.
• The cost of knowing the truth is high for many applications.
• The truth might only be a partial or outdated version.
• Availability is prioritized over consistency bymaking local decisions with available information.
• Improves the user experience by making this trade‑off, most of the time.

11.2.2 Aspects of Classic Distributed Consistency

• Distributed Objects and Persistence: Objects that span across multiple systems and persist
data in multiple locations.

• ACID: Atomicity, Consistency, Isolation, Durability ‑ a set of properties that guarantee that
database transactions are processed reliably.

• Transactions: A sequence of database operations that are executed as a single unit of work.
• Isolation Levels: The level of isolation between concurrent transactions, specifying how one
transaction affects another.

• Two‑Phase Locking: A protocol for enforcing serializable access to shared resources in a dis‑
tributed system.

• DistributedTransactions: Transactions that spanmultiple systemsandpersistdata inmultiple
locations.

• Two‑Phase Commit (2PC): A protocol for ensuring that a transaction is committed in a consis‑
tent state in a distributed system.

• Failure Models for 2PC: Models for how 2PC protocol handles system failures and ensures the
consistency of transactions.

11.2.3 Persistent Object Representations

• Real storage object lives in a data store and uses data store concepts for storage (e.g. a row in
a table).

• Service works with object representations (“Incarnations”) and provides the illusion of a per‑
sistent object to clients.

• Java Connector Architecture provides an adapter interface for resource managers.

11.2.4 Mechanisms for Persistence

SQL Driver:

• Used to store object state.
• Suffers from “impedance mismatch”.
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• Needs to control locking etc. in the service.

Object Relational Mapper (EJB/Hibernate):

• Used to store object state transparently for the programmer.
• Inheritance creates difficult problems for tablemapping: Either performanceor flexibility suffer.

Just storing an object is simple ‑ doing this in away that protects fromconcurrent access, system
failures, and across different data stores is much harder.

11.2.5 Persistent Object Mapping

• Enterprise integration software specializes in this kind of mapping
• Key to persistent mapping ismeta‑information:

– Generates object representations for a service.
– Generates code necessary for the data store to store the objectswith its ownmechanisms
and objects.

11.2.6 Data Store Session Pooling

• Number of channels to a data store is limited
• If an object directly allocates a session (channel) and does not return it quickly, system through‑
put would becomemarginal

• Session creation is expensive (security!)
• Clients can either ask apool for a sessionor the container framework canautomatically allocate
and return sessions

• Problems:

– Timeouts
– Connection recycling

11.3 Locking

11.3.1 Locking Against Concurrent Access

Binary locks:

• Used to synchronize an object, causing all clients except one to be blocked.
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• Limitations: Binary locks are simple to use, but their performance suffers as they cannot distin‑
guish between reads and writes.

Modal locks (read/write locks):

• Used to allow clients who only want to read to obtain read locks. Many concurrent read locks
are possible.

• Advantages: Modal locks allow for a more nuanced approach to concurrent access, improving
performance by allowing multiple read operations to occur simultaneously.

Lock Granularity: The granularity of locks (the scope of the resources being protected by the lock)
affects the overall throughput of a system. The smaller the lock granularity, the better the perfor‑
mancewill be.

11.3.2 Optimistic Locking

Process:

1. Lock a row, read it along with its timestamp, and then release the lock.
2. Start a transaction
3. Write the data to the database.
4. Acquire locks for all data read and compare the data timestamps.
5. If one of them is newer, the transaction operation is rolled back, otherwise it is commited.

Advantages:

• Better overall throughput as locks are held for only a short period of time
• Timestamp comparison logic is implemented as a framework mechanism in the client session
objects, simplifying the process

11.3.3 Serializability with Two‑Phase Locking

Process:

1. Allocate all locks
2. Manipulate the data
3. Release all locks

Advantages: Requires that all locksbeallocatedbeforeanydatamanipulationand releasedonly after
the manipulation is complete. Guarantees serializability.
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11.3.4 Deadlocks

• Statewhere twoormoreprocessesareblockedbecauseeachone iswaiting for resourcesheld
by the other

• Results in a situationwhere theprocesses cannot continue to runandare stuck inapermanent
waiting state

• Can occur in concurrent systemswhere multiple processes access shared resources

11.3.5 Distributed Deadlock Detection

Local wait‑for‑graphs:

• Correctness: Based on the definition of a wait‑for‑graph, this method correctly detects dead‑
locks by identifying cycles in the graph.

• Liveness: This method can only detect deadlocks that exist within a single process ormachine,
so it maymiss deadlocks in a distributed system.

• Cost/complexity: The cost of implementing this method is relatively low, as it only requires
tracking locks and resource requests within a single process.

• Failuremodel: Thismethod is susceptible to falsenegatives (misseddeadlocks) in adistributed
system.

• Architecture type: This method is suitable for systems with a centralized architecture, where
all locks and resource requests can bemonitored by a single process.

Detection servers:

• Correctness: Detection servers are designed to detect deadlocks in a distributed system, so
this method should provide correct results if implemented correctly.

• Liveness: This method is designed to detect deadlocks in a distributed system, so it should
have better liveness compared to local wait‑for‑graphs.

• Cost/complexity: The cost of implementing this method is higher than local wait‑for‑graphs,
as it requires communication and coordination betweenmultiple processes.

• Failure model: This method is susceptible to false negatives if one or more detection servers
fail, or if there are errors in the communication between the servers.

• Architecture type: Thismethod is suitable for systemswithadecentralizedarchitecture,where
multiple processes are involved in the detection of deadlocks.

Distributed edge chasing algorithms:

• Correctness: This method is designed to detect deadlocks in a distributed system, so it should
provide correct results if implemented correctly.
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• Liveness: This method is designed to detect deadlocks in a distributed system, so it should
have better liveness compared to local wait‑for‑graphs.

• Cost/complexity: The cost of implementing this method is higher than local wait‑for‑graphs,
as it requires communication and coordination betweenmultiple processes.

• Failuremodel: This method is susceptible to false negatives if there are errors in the communi‑
cation between the processes.

• Architecture type: Thismethod is suitable for systemswithadecentralizedarchitecture,where
multiple processes are involved in the detection of deadlocks.

Stochastic detection:

• Correctness: The accuracy of this method depends on the parameters used, so it may provide
incorrect results in some cases.

• Liveness: This method is designed to detect deadlocks in a distributed system, so it should
have better liveness compared to local wait‑for‑graphs.

• Cost/complexity: The cost of implementing this method is relatively low, as it only requires
monitoring resource requests and using randomization to make decisions.

• Failure model: This method may miss deadlocks if the randomization parameters are not set
correctly.

• Architecture type: Thismethod is suitable for systemswithadecentralizedarchitecture,where
multiple processes are involved in the detection of deadlocks.

11.4 Transactions

11.4.1 Classic ACID Definitions

• Durability: Ensures that once a transaction is committed, its effects persist even in the case
of system failures (e.g. a crash that causes you to lose changes made to a word file)

• Atomicity: Ensures that a transaction is treated as a single, indivisible unit of work that ei‑
ther happens in its entirety or doesn’t happen at all (e.g. in the case of a birthday party re‑
schedule where not all participants were caught in time)

• Isolation: Ensures that the concurrent execution of transactions results in a system state that
would be obtained as if transactions were executed serially (e.g. if two people work on a
shared file, their changes should not interfere with each other)

• Consistency: Ensures that the systemremains inavalid stateaftera transaction is executed
(e.g. after you complete a friend’s work for the day, the tasks remain consistent, and the system
remains in a valid state)
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11.4.2 Transaction Properties and Mechanisms

• Atomic Changes over Distributed Resources: This is achieved through the use of consensus
or voting algorithms such as two‑phase commit.

• Consistency: This is maintained by observing consistency constraints between objects, such
that the system remains in a valid state before and after a transaction is executed.

• Isolation from Concurrent Access: This is accomplished through the use of locking mecha‑
nisms, such as two‑phase locking or hierarchical locking.

• Durability of Changes: This is ensured by transferring changes made to memory objects to
persistent storage, to prevent loss in case of a system failure.

11.4.3 Serializability and Isolation

Definition: States that the outcome of executing a set of transactions should be equivalent to some
serial execution of those transactions.

Purpose: The purpose of serializability is to ensure that each transaction operates on the database
as if it were running by itself, which maintains the consistency and correctness of the database.

Importance: Without serializability, ACID consistency is generally not guaranteed, making it a crucial
component in maintaining the integrity of the database.

11.4.4 Transaction API

1. System starts in a consistent state
2. Begins transaction
3. Modifies objects

Commit transaction:

• System has a new, consistent state
• Local objects are now invalid
• Changes are visible to others

On error: Rollback:

• Either from system or from client
• Only successful commit operations become the new state durable and visible to others
• Means going back to the beginning completely
• Client does not even know that they tried an operation
• Log files would have to be cleaned.
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11.4.5 Components of Distributed Transactions

Process

• Begin()
• Commit()
• Rollback()

RPCs:

• Register (transactional servers)
• Vote (objects)
• Commit/rollback (objects, resource managers)
• Read/write/prepare (resource managers)

Components:

• Transaction
• Transactional client
• Transactional servers (objects)
• TACoordinator
• XA resource managers

11.4.6 Service Context

• Some services require context information to flowwith a call
• Security: Needs to flow user information, access rights, etc.
• Transactions: Needs to flow information about ongoing transactions to participants
• The additional information needs to be standardized to allow different vendor implementa‑
tions of services to interoperate.

11.4.7 Distributed Two‑Phase Commit

Vote:

• To achieve atomicoperations in adistributed setting, theTA‑Coordinator asksall participants
for their vote on committing or rolling back.

• Upon receiving a commit() call from a client, objects part of the TA vote by asking resource
managers (e.g. databases) to prepare for the commit.

• A successful return of “prepare” from resource managers means that both the object and the
resourcemanager have promised to commit the changes if the coordinator sends a commit.
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Completion:

• The coordinator is the only entity that can commit or abort a TA after the prepare phase.
• If the vote phasewas successful and all participants have prepared for a commit, the coordina‑
tor calls for a commit.

• In case of an error (e.g. unreachable participant), the coordinator calls for a rollback.

11.4.8 Failure Models of Distributed Transactions

Work Phase:

• If a participant crashes or becomes unavailable, the coordinator calls for a rollback.
• If the client crashes before calling commit, the coordinator will timeout the TA and call for a
rollback.

Voting Phase:

• If a resource becomes unavailable or has other issues, the coordinator calls for a rollback.

Commit Phase (Server Uncertainty):

• In caseof a crashedserver, itwill consult the coordinator after restart andask for thedecision
(commit or rollback).

11.4.9 Special Problems of Distributed Transactions

Resources:

• Participants in distributed TA’s consumemany system resources due to logging all actions to
temporary persistent storage.

• Large parts of the systemmay become locked during a TA.

Coordinator as a Single Point of Failure:

• The coordinator must also prepare for a crash and log all actions to temporary persistent stor‑
age.

Heuristic Outcomes for Transactions:

• In certain circumstances, the outcome of a transaction may only be determined heuristically if
the real outcome cannot be determined.
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11.4.10 Transaction Types

Flat Transactions:

• Characterized by all‑or‑nothing behavior.
• Any failure causes complete rollback to original state.
• Can result in loss of significant amount of work if many objects have been handled.

Nested Transactions:

• Allow partial rollbacks with a parent transaction.
• ChildTA rollbackdoesn’t affectparentTA,butparentTA rollback returnsall participants to initial
state.

• Example: Allocation of a travel plan (hotel, flight, rental‑car, trips, etc.).

Long‑running Transactions:

• Challenge is resource allocation and increasing amount of work lost in case of rollback.
• Syncpoints move the fallback position closer to the commit point.

Compensating Transactions:

• Improves transaction throughput bymaking objects visible sooner, at the cost of sacrificing the
ISOLATION property.

• Require compensation for previous TA which can no longer be rolled back.
• Depend on the application whether compensating transactions are possible.
• Can be hand‑coded if no transaction monitor/manager is available.

11.4.11 ANSI Transaction Levels

Problems:

• Dirty reads: Occurs when a transaction reads data written by another concurrent transaction
that has not yet been committed.

• Non‑repeatable reads: Occurs when a transaction re‑reads data it has previously read and
finds that the data has beenmodified by another transaction that has since committed.

• Phantom reads: Occurs when a transaction re‑executes a query returning a set of rows that
satisfies a search condition and finds that the set of rows satisfying the condition has changed
due to another recently‑committed transaction.

Transaction Levels:

• Read Uncommitted:
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– Prevents: Nothing

• Read Committed:

– Prevents:

* Dirty reads.

• Repeatable Read:

– Prevents:

* Dirty reads

* Non‑repeatable reads

• Serializable:

– Prevents:

* Dirty reads

* Non‑repeatable reads

* Phantom reads

The higher the level, the more overhead is required.

11.5 Distributed Filesystems

11.5.1 Filesystem Block Order Guarantees

• BOB (Block Order Breaker) is a tool used to evaluate the behavior of modern file systems in
regards to building crash consistent applications.

• It tests the order guarantees of blocks in file systems.

11.5.2 Eventually Consistent Storage Systems

• Consistency without Coordination: The design of modern data management systems has
been impacted by the rise of Internet‑scale geo‑replicated services.

• Weak Alternatives: To reduce the cost of expensive coordination, many systems have sought
weaker alternatives that still ensure application integrity.

• Cost of Coordination: Classic mechanisms like serializable transactions comewith associated
availability, latency, and throughput penalties.

• When to Forego Coordination: The question of when it’s safe to forego the cost of expensive
coordination versus when it’s necessary to pay the price is an important one.
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11.5.3 Grid Storage vs. NAS/SAN

Grid Storage:

• Requires POSIX‑Grid gateway
• Special cachingmay be needed for video (readahead)
• Offers huge bandwidth and scalability
• May require special maintenance
• May be proprietary
• Supports parallel processing
• Requires special applications
• Compatibilitywith existing apps is questionable
• Disaster recovery across sites is unclear
• Requiresmore electric power and space

NAS/SAN:

• POSIX‑compatible
• Special caching is difficult to implement
• Has a hard limit in SPxx storage interface
• Offers simple upgrades
• Supports standard file system
• Allows dynamic growth of file systems via LUN organization
• Requiresmaintenance effort to balance space/use
• Proven and fast technology
• Expensive disaster recovery through smaller replicas
• Several different file system configurations are possible
• Without virtual SAN, hot‑spots can occur on a single drive
• Longer drive‑rebuild times

To summarize:

• Watch out for proprietary lock‑in and compatibility issues with grid storage
• Grid storage requires programming skills for solutions (map/reduce with Hadoop)
• NAS/SAN is a proven and faster technology
• NAS/SANwon’t be replaced by grid storage (which is specialized)
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11.6 NoSQL

11.6.1 Forces behind NoSQL

• Need for low‑latency and high‑throughput access to data
• Difficulty in managing andmaintaining consistency in a distributed system
• Increased focus on scalability and flexibility
• Changing data requirements and needs for real‑time processing
• Cost and complexity of traditional RDBMs in large‑scale systems
• Inability of RDBMs to handle large amounts of unstructured data
• The need for horizontal scaling in storage
• Lack of support for real‑time, complex data processing using RDBMs
• The need for automatic scaling in storage to keep up with rapidly growing data
• Relaxed data consistency requirements in some applications.

11.6.2 Scaling Problems of RDBMs

• Poor time complexity of SQL joins: 𝑂(𝑚 + 𝑛) or worse
• Difficulty in horizontally scaling, resulting in loss of joins or jumping between nodes
• Unbounded nature of queries, which can lead to a single query overloading a database
• Optimized for storage efficiency (no duplicates), integrity, and flexibility of access through
arbitrary joins.

11.6.3 NoSQL Design Patterns

• Use partition keyswith many distinct values for better scalability and data distribution.
• Opt for a single table designwith hierarchicalmodeling andde‑normalization to simplify the
data structure.

• Ensure that values are evenly requested to avoid hot spots.
• Utilize composite secondary keys for 1:n and n:n queries.
• Limit query responses with paging token for better performance.
• Consider the use case and access patterns before finalizing the data layout.
• Avoid relational modeling and instead focus on simplifying the data structure.
• Data integrity is an application concern and should be handled by the application logic.
• Data storage efficiency is not a primary concern.
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11.6.4 DynamoDB Design Principles

• Decentralized design with no single point of failure (no master node)
• Supports heterogeneous hardware
• Symmetric peers for better scalability
• Incrementally scalable to handle increasing load
• Eventually consistent data replication
• Requires a trusted environment for data security
• Replication support for higher data availability. Always‑write enabled with conflict resolution
during read

• Multi‑version store with conflict resolution policies for better data management

11.7 Beyond Relaxed Consistency

11.7.1 Overview

• Order‑insensitive processing using CALM (Consistency as Logical Monotonicity) principles in
EC (Eventual Consistency) programs

• Converging replicated data types (CRDTs) divided into two types:

– State‑based CRDTs
– Operation‑based CRDTs

11.7.2 CALM Principle

• “Consistency as Logical Monotonicity”
• Links consistency with logical monotonicity, where monotonic programs ensure eventual
consistency regardless of the order of delivery and computation.

• Monotonic programs do not require coordination, unlike non‑monotonic programs where
adding an element to the input set can revoke a previously valid output.

• Non‑monotonic programs require coordination schemes that wait until inputs are complete
before proceeding.

11.7.3 CALMOperations

Logically Monotonic:

• Initializing variables
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• Accumulating set members
• Testing a threshold condition

Non‑monotonic:

• Overwriting variables
• Set deletion
• Resetting counter
• Negation

11.7.4 CRDTs

State‑based CRDTs:

• Calculate the new result at one node and then propagate it to replicas.
• The data structure must be commutative, associative, and idempotent, e.g., sets.

Operation‑based CRDTs:

• Send the requested operation to each replica and calculate the results locally.
• The operations must be commutative with “exactly once” semantics (idempotent) and in FIFO
order.

• These delivery guarantees are difficult to achieve, making state‑based CRDTsmore popular cur‑
rently.

11.7.5 Bending the Problem

• Separates data store and application‑level consistency concerns.
• CALM, ACID 2.0, and CRDT appeal to higher‑level consistency criteria in the form of application‑
level invariants.

• Instead of requiring strong consistency for every read andwrite, the application only needs to
ensure semantic guarantees (e.g., “the counter is strictly increasing”).

• This grants more flexibility in how reads and writes are processed.

11.7.6 Examples of CRDTs

Counters:

• Grow‑only counter: Merge operation is max(values), payload is a single integer
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• Positive‑negative counter: Consists of two grow counters, one for increments and another for
decrements

Registers:

• Last WriteWins register: Uses timestamps or version numbers, merge operation ismax(ts), pay‑
load is a blob

• Multi‑valued register: Uses vector clocks, merge operation takes both values

Sets:

• Grow‑only set: Merge operation is union(items), payload is a set, no removal is allowed
• Two‑phase set: Consists of two sets, one for adding and another for removing, elements can be
added once and removed once

• Unique set: Optimized version of the two‑phase set
• Last write wins set: Merge operation is max(ts), payload is a set
• Positive‑negative set: Consists of one PN‑counter per set item
• Observed‑remove set

11.7.7 Distributed Coordination

Features:

• Configuration changes and notifications
• Updates for failed machines
• Dynamic integration and deconfiguration of newmachines
• Elastic configuration with partial failures
• API for watches, callbacks, automatic file removal, and triggers
• Simple data model (directory tree model)
• High performance and highly available in‑memory cluster solution
• No locks for updates, but total ordering of requests for all cluster replicas
• All replicas answer reads
• Wait‑free implementation of coordination servicewith client API performing locks, leader selec‑
tion, etc

Liveness and Correctness:

• Sequential Consistency: Updates from a client will be applied in the order they were sent.
• Atomicity: Updates either succeed or fail. No partial results.
• Single System Image: A client will see the same view of the service regardless of the server it
connects to.

Felicitas Pojtinger 138



Uni Distributed Systems Summary 2023‑02‑05

• Reliability: Once anupdate has beenapplied, itwill persist from that time forwarduntil a client
overwrites the update.

• Timeliness: The client’s view of the system is guaranteed to be up‑to‑datewithin a certain time
bound.

11.8 Distributed Coordination Services

11.8.1 Zookeeper API

• create: Creates a node at a specified location in the tree
• delete: Deletes a node from the tree
• exists: Tests if a node exists at a specified location in the tree
• get data: Retrieves the data stored at a node
• set data: Writes data to a node
• get children: Retrieves a list of children of a node
• sync: Waits for data changes to be propagated to all nodes in the cluster.

11.8.2 Primary‑Order Atomic Broadcast with Zab

• Primary sends non‑commutative, incremental state changes to backup units
• Order of incremental changesmaintained even in case of primary crash
• Multiple outstanding requests possible
• Identification scheme to prevent re‑ordering of updates
• Synchronization phase to ensure old updates delivered before new ones stored.

11.8.3 Consistency Requirements for ABCast (Reliable Ordered Atomic Broadcast)

• Validity: If a correct process broadcasts amessage, all correct processes will eventually deliver
it.

• Uniform Agreement: If a process delivers a message, all correct processes will eventually de‑
liver it.

• Uniform Integrity: Every process delivers a message at most once, only if it was previously
broadcast by sender.

• Uniform Total Order: If processes p and q both deliver messages m and m0, their order must
be the same.
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11.8.4 Primary Order

• Local primary order: If primary broadcasts (v, z) before (v’, z’), process that delivers (v, z) must
have delivered (v’, z’) before (v, z).

• Global primary order: If Pi broadcasts (v, z) and Pj > Pi broadcasts (v’, z’), process delivering
both (v, z) and (v’, z’) must deliver (v, z) first.

• Primary integrity: If Pe broadcasts (v, z) and some process delivers (v’, z’) broadcast by Pe’ <
Pe, Pe must have delivered (v’, z’) before broadcasting (v, z).

11.8.5 HA Transactions

• Provide transactional guarantees without unavailability during system partitions or high
network latency (Non‑failing replica must respond)

• Not CAP: Can’t provide linearizability as reading the most recent write from a replica
• Not HAT‑compliant: Serializability, Snapshot Isolation, Repeatable Read Isolation
• Possible with algorithms relying on multi‑versioning and client‑side caching: Read Com‑
mitted Isolation, transactional atomicity, etc.

• Causal consistency with phantom prevention and ANSI Repeatable Read need affinity with
at least one server (sticky sessions)

• Unable to prevent concurrent updates to shared data items, cannot provide recency guar‑
antees for reads.

12 Design of Distributed Systems

12.1 Overview

• Key principles for system design
• Utilizing caching and replication for efficient operations
• Importance of architecture in optimizing performance
• Validation of architectural design
• Techniques for improving performance in large fan‑out architecture
• Strategies for achieving fault‑tolerance in high‑scale systems.
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12.2 Design Principles for Distributed Systems

12.2.1 Overview

• Consideration of Latency: Examination of buffering and round‑trip times
• Importance of Locality: Proper placement of heavily interacting components
• Avoiding Duplication of Work: Utilizing resources effectively
• Resource Pooling: Reusing resources in communication such as connections or thread pools
• Parallelization: Design for concurrent operations andminimize serialization
• Evaluating Consistency: Determining the appropriate level of consistency with caching and
replication

• Caching and Replication Strategies: Utilizing prediction and bandwidth to reduce latency
• End‑to‑end Argument: Minimizing heavy guarantees at lower levels of the system.

Know Your No. 1 Enemy: Latency!

12.2.2 Sharing Ressources and Data

• Pooling resources can improve performance even in local systems
• High‑frequency requests can lead to memory allocation issues and poor performance
• Caching is crucial for the effectiveness of distributed applications
• Minimizing backend requestswhile maintaining sane application logic
• Breaking down information into smaller fragments can reveal reusable parts

12.2.3 Connection Pooling

• Matching server and database CPU capabilities
• Avoiding blocking and app threads holding onto connections
• Careful monitoring of wait time in the pool
• Checking I/O rates with new hardware
• Understanding what constitutes a “connection” to storage
• Monitoring core/thread ratio, etc.

12.2.4 Horizonal Scaling/Parallelization

• Horizontal scaling through parallel processing
• Every request can be handled by any thread on any host
• Avoid synchronization points in servlet engines or database connections.
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12.2.5 Caching and Replication

• Caching components are responsible for maintaining data validity
• Data source is responsible for keeping replicas consistent and up‑to‑date
• Focus on reducing back‑end requests for improved efficiency.

12.2.6 End‑to‑End Argument

• User/Developer: Compensation for behavior through application
• Application Layer: Use of special commands, such as “Select for Update” or “Begin Transac‑
tion”

• Intermediate Layer: Compiler/Languages utilizing technologies such as Software Transac‑
tional Memory andmemory models

• Base Layer: Considerations for CPU cache coherence, database isolation levels, and real‑time
streaming, etc.

12.2.7 Design Methodology

• Back‑of‑the‑envelope calculations
• Decide on geographical distribution and replication strategy
• Determine data segregation, including single or multi‑tenancy models and partitioning
• Divide business requirements into REST‑like services
• Define SLAs for services, including availability, latency, throughput, consistency, and durabil‑
ity

• Define security contextwith IAAA (Identity, Authentication, Authorization, Audit) and perform
risk analysis

• Completemonitoring and logging setup
• Plan for deployment, release changes, testing, and maintenance using fault‑tolerant fea‑
tures.

12.2.8 Uncomfortable Real‑World Questions

• Howmany application servers are needed to support the customer base?
• What is the optimal ratio of users to web servers?
• What is the maximum number of users per server?
• What is the maximum number of transactions per server?
• Which specific hardware configurations provide the best performance?

Felicitas Pojtinger 142



Uni Distributed Systems Summary 2023‑02‑05

• What is the current production server capability?
• What do the users do? (These are business process definitions.)
• How fast do the users do it? What are the transaction rates of each business process?
• When do they do it? What time of day are most users using it?
• What major geographic locations are they doing it from?
• Howmany connections can the server handle?
• Howmany open file descriptors or handles is the server configured to handle?
• Howmany processes or threads is the server configured to handle?
• Does it release and renew threads and connections correctly?
• How large is the server’s listen queue?
• What is the server’s “page push” capacity?
• What type of caching is done?

12.3 Architecture Fields

12.3.1 Overview

• Information Architecture
• Distribution Architecture
• System Architecture
• Physical Architecture
• Architectural Validation

12.3.2 Information Architecture (to analyze Caching)

Defines pieces of information to aggregate or integrate

Data/changed by Time Personalization

Country Codes No (not often, reference data) No

News Yes (aging only) No, but personal selections

Greeting No Yes

Message Yes (slowly aging) Yes

12.3.3 Distribution Architcture
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Tells portal how tomap/locate fragments defined in the information

Data
Type SourceProtocolPort

Avg.
Resp.

Worst
Resp. Downtimes

Max
Conn. Loadbal.Security Contact/SLA

News hostX http/xml3000 100ms 6 sec. 17.00‑
17.20

100 client plain Mrs.X/News‑
SLA

ResearchhostY RMI 80 50ms 500ms 0.00‑
1.00

50 server SSL Mr.Y/res‑
SLA

Additional factors to consider:

• Available bandwidth
• Number of planned requests
• Distance to the device
• Availability numbers

Example results:

• Back‑end server performance affecting home page construction time
• Huge latencies and variations in response times causing instabilities in the portal application
• Getting to the servers for every request is nearly impossible due tohuge latencies and variations
in response times from dependencies.

12.3.4 Service Access Layer

Is determined by the distribution architecture.

• Handle changes in the interface
• Monitors backend system connections
• Disable connections that are not functioning properly (“fail fast”)
• Add new sources to the system
• Poll and re‑enable sources that have been temporarily disabled
• Keep track of statistics on all sources.

Simple Alternative: Sidecar, contains circuit breaker & service discovery

Advanced Alternative: Service mesh with separate data and control plane
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12.3.5 Physical and Process Architecture

Physical Architecture:

• Deals with reliability issues (replication, high‑availability, etc.) and scalability (horizontal
and/or vertical)

• Need to define scalability methods from the beginning due to their impact on overall system
architecture

Horizontally scalable application:

• Replicated onmultiple hosts
• Avoids single point of failure

Vertically scalable application:

• Can only install more CPUs or RAM on single instance of host
• Limited scalability and availability (HA application)

12.3.6 Architecture Validation

In the architecture validation phase these questions are answered: How does the architecture…

• Handle security and privacy?
• Handle data consistency and durability?
• Handle disaster recovery and business continuity?
• Handle performance, scalability and capacity?
• Handle integration with other systems and data sources?
• Handle upgrades, maintenance and support?
• Align with the organization’s goals, strategies and plans?

12.4 Improving an Existing Design

12.4.1 Problemswith Naive Application Designs

The portal had no caching etc.

• GUI architecture: Long time with empty page
• System architecture: No System Architecture Diagram!
• Performance: Very slow construction of home‑page
• Reliability: Frequent stalls and crashes of the application
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• Throughput: 10 users max. with top‑notch hardware!
• Team: Little understanding of performance or architecture

12.4.2 Improving the GUI Architecture

• Minimize HTTP requests by combining files and using sprites
• Use asynchronous loading for non‑critical resources
• Avoid heavy use of animations and dynamic effects
• Preload essential resources
• Use a content delivery network (CDN) for static resources
• Lazy load images and videos
• Use browser caching effectively
• Minimize the use of plugins and third‑party scripts.
• Minimize the number of DOMmanipulations
• Use lazy loading for images and other resources
• Avoid using large, blocking scripts
• Use a content delivery network (CDN) to distribute resources
• Consider using server‑side rendering or progressive web apps (PWA)
• Implement caching strategies at the server and client side
• Monitor and optimize the page load time regularly
• Use performance optimization tools and browser dev‑tools to identify bottlenecks.

12.4.3 Improving the System Architecture

Use a system architecture diagram:

• Show the main components and their interactions
• Indicate the flow of data and processing
• Highlight the main functionalities and relationships between components
• Reflect the overall structure and design of the system
• Provide a clear and concise representation of the system architecture.

12.4.4 Lessons Learned fromNaive Portal Designs

• Request time is affected by the sum of individual calls
• Each delay in a call contributes to the runtime
• Back‑end server problems lead to poor request time
• Long timeout settings negatively impact response times
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• Small improvements in sub‑requests matter with many concurrent requests
• Lack of central architecture diagram limits understanding of performance impact and
throughput

• JEE restrictions prevent creating custom threads.

12.5 Fan‑Out Architecture

12.5.1 Overview

Calls are parallel instead of serial.

• The overall request time is determined by the slowest sub‑request
• Each delay in an individual call adds to the runtime
• Long timeout settings negatively impact response times
• Using short timeouts for back‑end server calls is recommended
• Running short requests in separate threadsmay not be productive, consider request bundling
• Error from one sub‑call should not block the whole request, have a fallback
• Avoid all threads getting stuck on a dysfunctional sub‑call (bulkhead)
• Temporarily close dead connections (circuit‑breaker).

12.5.2 Reliability Issues in Dependencies

• System load becomes worse due to hanging requests occupying resources and leading to
heavy garbage collection

• Dead servers can cause a buildup of threads due to even short timeouts
• The portal was frequently impacted by failing back‑end servers
• Avoid lengthywaiting time for sub‑requests in the homepage action handler: Adopt the “Fail‑
fast” pattern today.

12.5.3 Fragments

Pages: Unique to customers, cannot be re‑used

Page fragments:

• Can be shared and heavily re‑used
• Allows huge reduction in back‑end requests
• Downside: If fragments change, mechanism needed to invalidate dependent pages.
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12.5.4 Latency Reduction & Tolerance

• Keep response times tight but aware of stragglers
• Fight stragglerswith backup requests and cross‑server cancellation
• Watch for overload at sender when responses come back
• Do NOT distribute load evenly, synchronize background load across machines instead
• Reduce head‑of‑line blocking (partition large requests)
• Partition data across machines
• Cheat by coming back with partial data
• Cross request adaptation
• Increase replication count
• Beware of the incast problem

12.5.5 Avoiding Getting Stuck

• Fail Fast: Don’t wait for problematic resources
• Timeouts: Use timeouts when accessing a service
• Exponentially Decreasing Retries: Use if needed
• Fallback: Use alternatives when service doesn’t work, such as serving stale data
• Caching: Retrieve data from cache if real‑time dependency is unavailable, even if data is stale
• Eventual Consistency: Queue writes to be persisted once dependency is available
• Stubbed Data: Revert to default values if personalized options can’t be retrieved
• Empty Response (Fail Silent): Return null or empty list that UIs can ignore.

12.6 Containing Failures

12.6.1 Circuit Breakers

• Purpose: Handle faults that might take a long time to recover from
• Provide control mechanism to prevent application from continually trying to perform a fail‑
ing operation

• Allows application to fail fast and respond to failures quickly
• Acts as a switch that “trips” when system detects a failure
• Stops application frommaking further attempts to perform operation until reset
• Helps prevent application from becoming unresponsive
• Protects other parts of the system from being affected by the failure.
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12.6.2 Bulkheads

• Bulkhead pattern is a design for fault‑tolerant applications
• Elements of an application are isolated into pools
• If one pool fails, others will continue to function
• Named after the sectioned partitions (bulkheads) of a ship’s hull
• Example: semaphores and thread pools

12.6.3 Blast Reduction

• Partition app into geographical regions (e.g. US, DACH etc.)
• Splitting regions further into specific availability zones and further cells
• Shuffle sharding: Provide a single‑tenant‑like isolation for shared workloads
• Splitting app itself into separate control and data planes
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