
Uni Distributed Systems Summary

Summary for the distributed systems course at HdM Stuttgart

Felicitas Pojtinger

2023-02-05

1



Meta



Contributing

These study materials are heavily based on professor Kriha’s “Verteilte
Systeme” lecture at HdM Stuttgart and prior work of fellow students.

Found an error or have a suggestion? Please open an issue on GitHub
(github.com/pojntfx/uni-distributedsystems-notes):

Figure 1: QR code to source repository

If you like the study materials, a GitHub star is always appreciated :)
2

https://www.hdm-stuttgart.de/vorlesung_detail?vorlid=5212233
https://www.hdm-stuttgart.de/vorlesung_detail?vorlid=5212233
https://github.com/pojntfx/uni-distributedsystems-notes


License

Figure 2: AGPL-3.0 license badge

Uni Distributed Systems Notes (c) 2023 Felicitas Pojtinger and contributors

SPDX-License-Identifier: AGPL-3.0

3



Course Timeline

This course on distributed systems covers a range of topics related to the
design, implementation, and management of distributed systems. The
course is divided into several sections, including:

1. Introduction to distributed systems: This section provides an
overview of distributed systems and their key characteristics.

2. Theoretical models of distributed systems: This section covers the
use of theoretical models, such as queuing theory and process and
I/O models, to understand and analyze distributed systems.

3. Message protocols: This section covers the use of message protocols,
including delivery guarantees, causality, and reliable broadcast, to
facilitate communication between components in a distributed
system.

4. Remote procedure calls: This section covers the use of remote
procedure calls (RPCs) to invoke functions on a remote machine, as
well as different RPC mechanisms such as marshaling, thrift, and
gRPC.

5. Distributed objects: This section covers distributed objects such as
CORBA, RMI and DCOM.

6. Distributed business components: This sections covers general
component technology as well as Enterprise Java Beans (EJBs).

7. Services: This sections covers a distribution paradigm between hype
and revolution.

8. Theoretical foundations of distributed systems: This section covers
key concepts and theories that are relevant to the design of
distributed systems, including the FLP theorem, time, causality,
consensus, eventual consistency, and optimistic replication.

9. Distributed services and algorithms I: This section covers the design
and implementation of various distributed services and algorithms,
including load balancing, message queues, caching, and consistent
hashing.

10. Distributed services and algorithms II: This section covers more
advanced topics in distributed services, including persistence,
transactions, eventual consistency, and coordination.

11. Design of distributed systems: This section covers the methodology
and principles for designing distributed systems, as well as examples
of different architectures and design patterns.

4



Introduction to Distributed Systems



Overview

1. Definition of a distributed system (DS)
2. Challenges for developers working with DS
3. Reasons for using a DS
4. Examples of DS
5. Characteristics of DS
6. Middleware for DS
7. Concepts and architectures in DS, including scale, parallelism, and
latency

8. Resources related to DS

5



Definition of a Distributed System

A system that is made up of independent agents that interact with each
other and produce a cohesive behavior. The interactions and events in
this system happen concurrently and in parallel, meaning that they occur
simultaneously and independently of one another. This type of system is
often used to perform tasks that are too complex or large for a single
agent to handle, and the concurrent and parallel nature of the
interactions allows for efficient and effective processing of the tasks.

6



Emergence

Four types of emergence: strong emergence, weak emergence,
evolutionary emergence, and constructed emergence.

• Strong emergence refers to situations where it is not possible to
predict what will emerge from the interactions of the system.

• Weak emergence refers to situations where simple principles
combine to produce surprising results.

• Evolutionary emergence refers to the complex but robust
development of a system over time, such as the transformation of an
egg into a human being.

• Constructed emergence refers to the complex but often not robust
emergence of a system that has been intentionally designed, such as
a distributed system.

Emergent failure modes: Instances of cascading failures in constructed
emergence. 7



Why are Distributed Systems complicated?

• One reason is emergence, which refers to the complex and often
unexpected behaviors that can arise when multiple components of a
system interact with each other.

• Another reason is the single machine view, which can make it difficult
to understand and debug issues that arise in a distributed system.

• Errors are also an inherent part of distributed systems, and
developers must be prepared to handle and troubleshoot these
errors.

• Additionally, there is no “free lunch” in distributed systems, meaning
that there is always some trade-off or cost associated with every
design decision.

• Finally, developing a distributed system involves total end-to-end
system engineering, which can be a complex and time-consuming
process.

• All distributed systems algorithms are also based on the failures that
are expected and how they are handled, which can add to the
complexity of developing a distributed system.

8



Why Distribute a System?

There are several reasons why an organization might choose to use a
distributed system:

• Robustness/resilience: Distributed systems are designed to be
resistant to single points of failure, which makes them more resilient
and able to handle unexpected issues. This can be achieved through
techniques such as replication, which allows data to be stored on
multiple servers to ensure that it is still available even if one server
fails.

• Performance: Distributed systems can be designed to split
processing into independent parts, which can improve overall
performance by allowing different parts of the system to operate in
parallel.

• Scalability/throughput: Distributed systems can be designed to
handle large numbers of requests per second, making them
well-suited for applications that need to scale to handle high levels
of traffic.

• Security: Distributed systems can be used to create different security
domains, which can help to protect sensitive data and ensure that it
is only accessed by authorized users.

• Price per request: Distributed systems can be designed to use
cheaper horizontal scaling or free resources, which can help to
reduce the cost of processing each request.

9



Examples of Distributed Systems

There are many examples of distributed systems, including:

• Energy grids and telecom networks: These systems distribute
electricity and communication signals across large geographic areas,
often using complex networks of wires and other infrastructure.

• Villages, towns, and cities: These systems are examples of
distributed systems that are made up of many interconnected parts,
including homes, businesses, roads, and other infrastructure.

• IT infrastructure of large companies: Many large companies rely on
distributed systems to manage their IT infrastructure, including
servers, storage, and networks.

• High-performance clusters: These systems are used to perform
complex calculations and simulations, often in scientific or technical
fields.

• Google, Facebook, and other internet companies: These companies
rely on distributed systems to power their online platforms and
services, including search, social networking, and advertising.

• The web: The internet itself is a distributed system, made up of
millions of interconnected servers and devices that share
information and resources.

• The human body, organizations, and states: These systems are
examples of distributed systems that are made up of many
interconnected parts, each of which plays a specific role in the
overall functioning of the system.

• A flock of birds: A flock of birds is an example of a distributed system
in nature, with each bird communicating and coordinating with the
others to achieve a common goal.

10



Overview

• Influence of distribution topology and remoteness: The physical
layout of a distributed system and the distance between its
components can have a significant impact on its performance and
behavior.

• Emergent behaviors and concurrent events: Distributed systems can
exhibit complex and often unexpected behaviors as a result of the
interactions between their components. Concurrent events, in which
multiple parts of the system are executing at the same time, can also
contribute to this complexity.

• Few analytic solutions and few model-based approaches: There are
often few analytic solutions or model-based approaches available
for understanding and predicting the behavior of distributed
systems, which can make them challenging to design and debug.

• Heterogeneous components: Distributed systems often consist of a
wide variety of components, each with its own hardware, software,
and other characteristics. This can make it difficult to ensure that all
components are compatible and work together effectively.

• No global time: In a distributed system, there is no single, global
clock that all components can use to coordinate their activities. This
can make it difficult to synchronize the actions of different parts of
the system.

• A strong need for security: Distributed systems often handle
sensitive data or perform critical functions, which makes security a
key concern.

• Concurrency, parallelism, and replication: Distributed systems often
rely on concurrency, parallelism, and replication to improve
performance and resilience.

• Failure models define everything: The design and behavior of
distributed systems are often shaped by the failure models that are
used to define how the system should respond to different types of
failures.

11



Eight Fallacies of Distributed Computing

• The network is reliable: This fallacy assumes that the network is
always available and that communication between components will
always be successful. In reality, networks can experience outages or
other problems that can disrupt communication.

• Latency is zero: This fallacy assumes that there is no delay in
communication between components, which is not always the case.
Latency, or the time it takes for a message to travel from one
component to another, can vary depending on the distance between
components and other factors.

• Bandwidth is infinite: This fallacy assumes that there is an unlimited
amount of capacity available for transmitting data, which is not
always the case. Network bandwidth is a finite resource that can
become congested, leading to slower communication speeds.

• The network is secure: This fallacy assumes that the network is
invulnerable to security threats, such as hacking or data breaches. In
reality, networks can be vulnerable to these types of threats, and it is
important to implement appropriate security measures to protect
against them.

• Topology doesn’t change: This fallacy assumes that the physical
layout of the network, or its topology, will not change over time. In
reality, the topology of a network can change due to factors such as
the addition or removal of components or changes in the physical
infrastructure.

• There is one administrator: This fallacy assumes that there is a
single person or group responsible for administering the network,
which is not always the case. Distributed systems can have multiple
administrators, each with different responsibilities and roles.

• Transport cost is zero: This fallacy assumes that there is no cost
associated with transmitting data over the network, which is not
always the case. In reality, there are often costs associated with
networking, including hardware and software expenses and
maintenance costs.

• The network is homogeneous: This fallacy assumes that all
components of the network are the same, which is not always the
case. In reality, distributed systems often consist of a variety of
components with different hardware, software, and other
characteristics.

12



Programming Languages and Distributed Systems

There are two main approaches to programming languages and
distributed systems: the transparency camp and the message camp.

The transparency camp focuses on hiding the complexity of a distributed
system from the programmer. This can be achieved through techniques
such as creating type-safe interfaces and calls, and hiding security,
storage, and transactions behind frameworks such as .NET or Enterprise
Java Beans (EJBs). This approach treats the distributed system as a
programming model, rather than something that requires special
handling.

The message camp, on the other hand, takes a more direct approach to
programming distributed systems. This approach typically involves using a
simple create, read, update, delete (CRUD) interface and using message
content as the interface. Messages are often coarse-grained, meaning that
they carry a large amount of data in a single message, often in the form of
documents. Programmers in this camp deal with the complexity of
remoteness directly, and architectures are often event-based or based on
the representational state transfer (REST) model.

13



History of Distributed Systems

The history of distributed systems can be divided into several distinct
periods:

• 1950s-1980s: During this period, basic research was conducted on
topics such as time, consensus, and computability, which laid the
foundations for the development of distributed systems.

• 1990s: In the 1990s, distributed systems were used to connect
Intranet applications using technologies such as Common Object
Request Broker Architecture (CORBA), Remote Procedure Calls (RPC),
and Distributed Component Object Model (DCOM). Client-server web
servers also became popular during this period. Programming
models dominated the design and development of distributed
systems.

• 2000s: In the 2000s, distributed systems were used to power
peer-to-peer software for file sharing and large social sites emerged,
which posed new challenges in terms of scalability and performance.
Message passing and parallel batch processing techniques such as
map/reduce were developed to address these challenges. This
period also saw the emergence of in-memory computing and the CAP
theorem, which established that it was not possible for a distributed
system to simultaneously provide all three of the following
properties: consistency, availability, and partition tolerance.

• 2010 and beyond: In the 2010s and beyond, distributed systems have
been used to power large-scale warehousing systems, fan-out
architectures, and real-time stream processing. Flash memory and
network performance have become key considerations, and
microservices and serverless computing have emerged as popular
approaches to designing and building distributed systems.

14



Metcalfe’s Law

Metcalfe’s law is a principle that states that the value or utility of a
network increases as the number of users in the network increases. This
is because the more people who are using the network, the more useful it
becomes as a platform for communication, collaboration, and the
exchange of information and resources. The adoption rate of a network
also tends to increase in proportion to the utility provided by the network,
which is why companies often give away software or other products for
free in order to increase the size of their user base and the value of their
network.

Metcalfe’s law is often cited as a factor that can contribute to the
emergence of scale-free, or power law, distributions in networks. This type
of distribution is characterized by a few nodes (or users) with many
connections, and many nodes with only a few connections. The existence
of network effects, in which the value of a network increases with the
number of users, can help to explain why we don’t see many Facebooks or
Googles – it can be difficult for new networks to gain traction and achieve
the same level of utility as established networks with a large user base.

15



Security Topics for Distributed Systems

Security is an important concern in distributed systems, as they often
handle sensitive data or perform critical functions. Some key security
topics that are relevant to distributed systems include:

• Authentication: This refers to the process of verifying the identity of
a user or device. In a distributed system, authentication may be used
to ensure that only authorized users can access certain resources or
perform certain actions.

• Authorization: This refers to the process of granting or denying
access to specific resources or actions based on the identity of a
user or device. In a distributed system, authorization controls may
be used to ensure that users can only perform actions that are
appropriate for their role or level of access.

• Confidentiality: This refers to the protection of information from
unauthorized access or disclosure. In a distributed system,
confidentiality may be achieved through techniques such as
encryption or the use of secure channels for communication.

• Integrity: This refers to the protection of information from
unauthorized modification or tampering. In a distributed system,
integrity may be maintained through techniques such as hashing or
the use of digital signatures.

• Non-repudiation: This refers to the ability to prove that a specific
action or transaction was performed by a particular user or device.
In a distributed system, non-repudiation may be achieved through
techniques such as digital signatures or the use of timestamps.

• Privacy/anonymity: These refer to the protection of personal
information and the ability to use a system without revealing one’s
identity. In a distributed system, privacy and anonymity may be
achieved through techniques such as the use of pseudonymous
identities or the use of encryption to protect communications.

• Firewalls: A firewall is a security system that controls incoming and
outgoing network traffic based on predetermined security rules. In a
distributed system, firewalls can be used to protect against
unauthorized access and to prevent malicious traffic from entering
or leaving the system.

• Certificates, public key infrastructure (PKI), and digital signatures:
These are tools and techniques that are used to establish trust and
authentication in a distributed system. Certificates, for example, can
be used to verify the identity of a user or device, while PKI is a
system that manages the issuance and revocation of certificates.
Digital signatures are used to verify the authenticity of a message or
document.

• Encryption: Encryption is a technique that is used to protect
information from unauthorized access or disclosure. In a distributed
system, encryption can be used to secure communication channels
and to protect data at rest. There are a variety of encryption
methods and devices that can be used to achieve this goal.

• Software architecture: The design and organization of the software
components in a distributed system can have a significant impact on
its security. It is important to consider security throughout the
software development process and to design the system with
security in mind.

• Intrusion detection: This refers to the process of identifying and
responding to unauthorized access or activity in a distributed system.
Intrusion detection systems are used to monitor the system for signs
of an attack or other security breach, and to alert administrators or
take other appropriate action when an incident is detected.

• Sniffing: This refers to the practice of intercepting and monitoring
network traffic in order to gather information or to perform other
malicious actions. In a distributed system, sniffing can be used to
capture sensitive data or to disrupt communication.

• PGP, SSL, etc.: These are tools and protocols that are used to secure
communication in a distributed system. PGP (Pretty Good Privacy) is
a data encryption and decryption program, while SSL (Secure Sockets
Layer) is a protocol for establishing secure links between networked

• Denial of service (DoS) attacks: These are attacks that are designed
to disrupt the availability of a network or system by flooding it with
traffic or other requests, thereby preventing legitimate users from
accessing the system. In a distributed system, DoS attacks can be
particularly disruptive as they can affect multiple components at
once.

16



Theoretical Foundations of Distributed Systems

The theoretical foundations of distributed systems are a set of concepts
and principles that form the basis for the design and analysis of these
systems. Some of the key theoretical foundations of distributed systems
include:

• No global time: In a distributed system, it is not possible to rely on a
single, global clock to coordinate events. Instead, techniques such as
logical clocks and vector clocks are used to provide a partial
ordering of events within the system.

• FLP theorem of asynchronous systems: The FLP (Fischer, Lynch, and
Patterson) theorem states that it is impossible to design an
asynchronous distributed system that is both safe and live (that is,
capable of making progress). This theorem highlights the challenges
of building distributed systems that can handle failures or delays in
communication.

• Failure detection and timeout: One of the challenges of distributed
systems is detecting failures or delays in communication and
deciding how to respond to them. Timeout mechanisms are often
used to detect failures, but setting appropriate timeout values can
be difficult.

• Concurrency and deadlocks: In a distributed system, multiple
processes may execute concurrently, which can lead to situations
where two or more processes are waiting for each other to complete
before they can make progress. This is known as a deadlock, and can
be difficult to resolve in a distributed system.

• CAP theorem: The CAP (consistency, availability, partitioning)
theorem states that it is impossible for a distributed system to
simultaneously provide all three of the following properties:
consistency, availability, and partition tolerance. This theorem
highlights the trade-offs that must be made when designing a
distributed system.

• End-to-end argument: The end-to-end argument states that certain
functions should be placed at the endpoints of a system, rather than
in the middle, in order to maximize flexibility and modularity. This
principle is often applied in distributed systems to determine where
certain functions should be implemented.

• Consensus, leader selection, etc.: Consensus is the process of
agreeing on a single value or decision in a distributed system. This
can be challenging in the presence of failures or delays, and requires
mechanisms such as leader selection or voting to resolve.

17



Distributed Systems Design Fields

The design of a distributed system involves addressing a number of
common problems and considering various architectural factors in order
to create a system that is scalable, reliable, and secure. Some key
considerations in distributed system design include:

• Common problems: When designing a distributed system, it is
important to consider a number of common problems that can
impact the performance, reliability, and security of the system. These
include issues such as fail-over, maintenance, policies, and security
integration.

• Information architecture: The information architecture of a
distributed system refers to the way in which information is
organized and structured within the system. This includes defining
and qualifying the various information fragments and flows that
make up the system.

• Distribution architecture: The distribution architecture of a
distributed system refers to the layout and organization of the
various components of the system and how they are connected to
each other. This includes creating a map of all participating systems
and their quality of service, and determining how communication
and resource sharing will be managed within the system.

18



An Introduction to Middleware

Middleware is software that sits between the operating system and the
application layer of a distributed system, providing a layer of abstraction
that enables communication and resource sharing among the various
components of the system. Some key characteristics of middleware
include:

• It is used to facilitate the creation of distributed applications.
• Provides glue code and generators that allow different programming
languages and systems to interoperate.

• Controls messages and enforces delivery guarantees, such as
at-least-once delivery.

• Reorders requests from participants to create a causal or total
ordering.

• Takes over responsibility for messages and may store them
temporarily.

• Creates groups of nodes that process events together and controls
fail-over.

• Hides differences in hardware, location of services, and offers load
balancing.

• Allows filtering of requests or provides means to add additional
security information to calls.

• Provides powerful services such as locking, scheduling, and
messaging to applications.

• Offers frameworks that provide automatic storage, security checks,
and transactional control.

• Supports message bus architectures that provide loose coupling
through publish/subscribe functions.

The importance of middleware in distributed systems cannot be
overstated. It is essential for enabling communication and resource
sharing among the various components of the system, and for abstracting
away the complexities of working with distributed systems. Without
middleware, it would be much more difficult to develop distributed
applications that are scalable, reliable, and secure.

19



Distribution Transparencies

Distribution transparencies are features that are designed to hide the
complexities of working with distributed systems from the user or
developer. Some key distribution transparencies include:

• Access: This transparency masks differences in languages and data
representation, allowing different systems to communicate and
exchange data with each other.

• Failure: This transparency masks failures and enables fault tolerance
through automated fail-over to other servers.

• Scalability: This transparency provides intelligent load balancing of
requests to ensure that the system can handle a large number of
requests without becoming overloaded.

• Redundancy: This transparency transparently replicates data to
ensure that it is available even if one or more servers fail.

• Location: This transparency allows users to access services using
logical, rather than physical, names. This enables services to be
moved or relocated without affecting the user experience.

• Migration: This transparency hides the true location of a service or
object from clients. If the location changes, the client will not notice.

• Persistence: This transparency automatically loads and stores data
on demand to unload server memory.

• Sharding: This transparency distributes storage requests across
multiple backend systems to ensure that the system can scale to
handle a large volume of data.

• Transactions: This transparency makes requests ACID (Atomic,
Consistent, Isolated, and Durable), ensuring that they are executed
correctly and consistently.

• Security: This transparency automatically checks for the required
credentials or roles in requests, ensuring that only authorized users
can access resources.

• Monitoring: This transparency creates central logs with correlation
IDs that join request parts across nodes, enabling administrators to
track and monitor the performance of the system.

20



Classification of Middleware

Middleware can be classified into several categories based on the type of
service it provides and the way it communicates with other components in
a distributed system. Some common types of middleware include:

• Socket-based services: These are middleware systems that use
sockets to communicate with other components in a distributed
system. Sockets are a low-level communication mechanism that
allows programs to send and receive data over a network.

• Remote procedure calls (RPCs): These are middleware systems that
allow programs to make calls to procedures or functions that are
located on a remote machine, as if they were located on the local
machine.

• Object request brokers (ORBs): These are middleware systems that
enable communication between objects that are running on different
machines. ORBs provide an interface that allows objects to
communicate with each other using a common protocol. Examples
include CORBA and RMI.

• Message-oriented middleware (MOMs): These are middleware
systems that enable communication between components by
exchanging messages. MOMs are often used in event-driven systems
and reactive systems, which respond to external events or stimuli.

• Web services: These are middleware systems that provide a way for
different applications to communicate over the web using standard
protocols such as XML-RPC, SOAP, and UDDI. Web services are often
used in service-oriented architectures (SOA) and representational
state transfer (REST) systems.

• Frameworks: These are middleware systems that provide a set of
tools and libraries for building distributed applications. Examples
include Enterprise Java Beans (EJBs) and the Java 2 Enterprise Edition
(J2EE).

• Peer-to-peer (P2P) systems: These are middleware systems that
enable communication and resource sharing among a group of
computers or devices that are connected to each other. P2P systems
do not rely on a central server, but rather allow each device to
communicate directly with other devices in the network.

• Agent-based systems: These are middleware systems that use
software agents to communicate with other components in a
distributed system. Agents are autonomous programs that are
designed to perform a specific task or function. Examples include
Jini and Aglets.

• Tuple-spaces and distributed blackboards: These are middleware
systems that use a shared memory space to enable communication
and resource sharing among different components in a distributed
system.

• Warehouse-computing architectures: These are middleware systems
that are designed to support the storage and processing of large
volumes of data in a distributed environment, such as a data center.

21



Theoretical Models of Distributed
Systems



Overview

1. Message passing theoretical model
2. Distributed computing topologies
3. Client-server systems, including critical points, architectures,
processing and I/O models

22



Synchronous vs. Asynchronous Systems

Synchronous and asynchronous systems are two types of distributed
systems that differ in the way that they handle communication and the
passage of time.

In a synchronous system, events are assumed to be delivered in a
lockstep manner, with a fixed delay between the occurrence of an event
and its delivery. This means that events are delivered at predetermined
intervals, and the system can be designed to operate on the assumption
that events will be delivered at these intervals.

Asynchronous systems do not have a fixed delay between the occurrence
of an event and its delivery. Events may be delivered at any time, and the
system must be able to handle this uncertainty. Asynchronous systems
typically require more complex distributed algorithms to ensure correct
operation, but they are generally easier to build and maintain than
synchronous systems.

In practice, most distributed systems are asynchronous, with additional
mechanisms such as failure detectors and randomization used to help
ensure correct operation.

23



Properties of Message Protocols

Message protocol properties are characteristics that describe the desired
behavior of a message passing protocol in a distributed system. These
properties are used to ensure that the protocol operates correctly and
achieves its intended goals.

Some common message protocol properties include:

• Correctness: This property refers to the invariant properties of the
protocol, which are properties that are expected to hold throughout
all possible executions of the protocol. Ensuring the correctness of a
protocol is important for ensuring that the protocol achieves its
intended goals.

• Liveness/termination: This property refers to the ability of the
protocol to make progress in the context of certain failures and
within a bounded number of rounds. A protocol that satisfies this
property is said to be “lively” or “live”, while a protocol that does not
satisfy this property is said to be “deadlock”.

• Fairness: This property refers to the inability of any participant in the
protocol to be “starved” or denied access to resources. A protocol
that satisfies this property is said to be “fair”, while a protocol that
does not satisfy this property is said to be “unfair”.

• Agreement: This property refers to the ability of all participants in
the protocol to agree on a specific decision or output value. Ensuring
agreement is important for ensuring that the protocol achieves a
consistent result.

• Validity: This property refers to the ability of the protocol to output a
result that is consistent with the input value. A protocol that satisfies
this property is said to be “valid”, while a protocol that does not
satisfy this property is said to be “invalid”.

24



Complexity of Distributed Algorithms

• Time complexity refers to the amount of time it takes for an
algorithm to complete. This is often measured in terms of the time
of the last event before all processes finish.

• Message complexity refers to the number of messages that need to
be sent in order for the algorithm to complete. This includes both
the number of messages sent and the size of the messages. The
number of rounds needed for termination is also an important factor
in the message complexity of an algorithm, as it can have a
significant impact on the overall scalability of the protocol.

25



Failure Types

In distributed systems, there are several types of failures that can occur.
These failures can have different impacts on the system and can require
different approaches to handling them.

Some common types of failures in distributed systems include:

• Crash failure: This type of failure occurs when a process stops
working and remains down. This can be caused by a variety of issues,
such as hardware or software problems.

• Connectivity failures: This type of failure occurs when there is a
problem with the network that connects the nodes in the system.
This can cause “split brain” situations, where the system becomes
divided into two separate networks, or node isolation, where a node
becomes disconnected from the rest of the system.

• Message loss: This type of failure occurs when individual messages
are lost during transmission. This can be caused by a variety of
issues, such as network problems or hardware failures.

• Byzantine failures: This type of failure occurs when nodes in the
system violate protocol assumptions and promises. This can include
breaking promises due to disk or configuration failures, or
intentionally behaving in a way that goes against the protocol.
Byzantine failures are often considered to be the most difficult type
of failure to handle in a distributed system, as they can be difficult to
detect and can have significant impacts on the system.

26



Distributed Computing Topologies

There are several types of distributed computing topologies that can be
used to design distributed systems. These topologies can have different
characteristics and can be used to achieve different goals, depending on
the needs of the system.

Some common types of distributed computing topologies include:

• Client/server systems: In this type of topology, clients initiate
communication with servers, which process the requests and send a
response back to the client. This is the most common type of
distributed system and is often used for applications where clients
need to request specific information or services from servers.

• Hierarchical systems: In this type of topology, every node can act as
both a client and a server, but some nodes may play a special role,
such as a domain name system (DNS) server. This type of topology
can reduce communication overhead and provide options for central
control, making it useful in certain types of systems.

• Totally distributed systems: In this type of topology, every node is
both a client and a server. This type of topology can be useful for
systems where nodes need to communicate with each other directly,
rather than relying on a central server.

• Bus systems/pub-sub: In this type of topology, every node listens for
data and posts data in response. This can be useful for event-driven
systems where nodes need to communicate with each other
asynchronously.

27



Queuing Theory: Kendall Notation M/M/m/ß/N/Q

The Kendall notation, also known as the Kendall notation for Markov
chains, is a way of describing the behavior of a queuing system. It is often
used in the field of operations research to analyze the performance of
systems that have a finite number of servers and a finite queue size.

• ß: Population Size (limited or infinite)
• M,D,G: Probability distribution for arrivals
• N: Wait queue size (can be unlimited)
• Q: Service policy type (Fifo, shortest remaining time first etc)
• M,D,G: Probability distribution for service time
• m: Number of service channels

28



Generalized Queuing Theory Terms (Henry Liu)

• Server/Node: A combination of a wait queue and a processing
element

• Initiator: The entity that initiates a service request
• Wait time: The time a request or initiator spends waiting in line for
service

• Service time: The time it takes for the processing element to
complete a request

• Arrival rate: The rate at which requests arrive for service
• Utilization: The percentage of time the processing element spends
servicing requests, as opposed to being idle

• Queue length: The total number of requests waiting and being
serviced

• Response time: The sum of the wait time and service time for a
single visit to the processing element

• Residence time: The total time spent by the processing element on a
single transaction, if it is visited multiple times

• Throughput: The rate at which requests are serviced, or how fast
requests can be processed without long wait times.

29



Little’s Law

• Little’s Law states that in a stable system, the long-term average
number of customers (L) is equal to the long-term average effective
arrival rate (λ) multiplied by the average time a customer spends in
the system (W).

• This can be expressed algebraically as L = λW.
• Little’s Law is used to analyze and understand the behavior of
systems that involve waiting, such as queues or lines. It can help to
predict the average number of customers in a system, as well as the
average time they will spend waiting, given a certain arrival rate.

30



Hejunka

Hejunka is a Japanese term that refers to the practice of leveling the
production process by smoothing out fluctuations in demand and task
sizes. It is often used in lean manufacturing and just-in-time (JIT)
production systems to improve the efficiency and flow of work through a
system.

The goal of Hejunka is to create a steady, predictable flow of work through
the system by reducing variability in task sizes and demand. This can be
achieved through a variety of methods, such as:

• Setting limits on the number of tasks or requests that can be
processed at any given time

• Balancing the workload across different servers or processing
elements

• Prioritizing tasks based on their importance or impact on the overall
system

• Using techniques such as batching or grouping similar tasks together
to reduce variability

By leveling the production process and reducing variability in task sizes,
Hejunka can help to improve the efficiency and flow of work through a
system, and reduce the risk of bottlenecks or delays caused by large
differences in task size.

31



Lessons Learned from Queuing Theory

• Request numbers: Caching can be used to reduce the number of
requests that need to be processed by storing frequently accessed
data in memory, so that it can be quickly retrieved without the need
to fetch it from a slower storage medium.

• Batching: The use of a multi-get API can help to reduce the number
of requests that need to be processed by allowing multiple requests
to be bundled together and processed as a single unit.

• Task sizes and variability: Service level agreements (SLAs) can be
used to define the acceptable level of variability in task sizes and
completion times, and Hejunka is a technique that involves leveling
the production process by smoothing out fluctuations in demand
and task sizes. This can help to reduce variability and improve the
efficiency of the system.

32



Request Problem in Multi-Tier Networks

In a multi-tier network, the request problem refers to the fact that
requests must travel through multiple layers or tiers of servers in order to
be processed, and each layer adds its own processing time and potential
delays to the overall response time.

The average response time in a multi-tier network is therefore the sum of
the trip average (the time it takes for a request to travel from one server
to the next) multiplied by the wait time (the time a request spends waiting
for a server to become available) at each layer, plus the sum of the service
demand (the time it takes for a server to process a request) at each layer.

It is important to note that in a multi-tier network, all requests are
synchronous and may be in contention with each other, which means that
wait times can occur due to contention for server resources. This can
impact the overall efficiency of the system and may require the use of
techniques such as caching or batching to reduce the number of requests
that need to be processed.

33



Task Size Problem in Multi-Tier Networks

In a multi-tier network, the task size problem refers to the fact that
differences in task size can cause delays and inefficiencies in the
processing of requests.

In the case of pipeline stalls between nodes, large differences in task size
can cause requests to be held up at one node while waiting for the next
node to become available, leading to delays in the overall response time.

34



Theories & Model vs. Reality

When applying queuing theory models to real-world systems, there are
several factors that can impact the accuracy and usefulness of the model.
These include:

• Latency: Latency refers to the time it takes for a request to travel
from one server to another or for a task to be completed. Latency
can vary based on a variety of factors, such as network speed, server
load, and the distance between servers, and it can impact the
accuracy of queuing theory models.

• Blocking/locking/serialization in service units: In real-world
systems, servers may block or lock requests while they are being
processed, or may process requests serially rather than in parallel.
This can impact the accuracy of queuing theory models that assume
parallel processing.

• Non-random distributions and feedback effects: In real-world
systems, request and task arrival rates may not always follow a
random distribution, and there may be feedback effects that impact
the flow of work through the system. This can make it difficult to
accurately model the behavior of the system using queuing theory.

• Dead requests: In some cases, requests may be lost or dropped due
to errors or other issues, which can impact the accuracy of queuing
theory models.

• Backpressure: In systems where the capacity of servers or processing
elements is limited, it is possible for requests to build up and create
a backlog of work. This is known as backpressure, and it can impact
the accuracy of queuing theory models.

• Missing variables and coherence losses: Queuing theory models may
not always include all the relevant variables or may not accurately
account for coherence losses, which can impact their accuracy in
predicting the behavior of real-world systems.

35



Critical Points in Client/Server Systems

On the client side:

• Locating the server: The client must be able to locate the server in
order to establish a connection. This process can be impacted by
factors such as network speed and latency.

• Authentication: The client may need to authenticate itself in order to
access the server and its resources.

• Sync/async: The client may be able to send requests synchronously
or asynchronously, which can impact the overall performance of the
system.

• Speed up/down: The client may be able to adjust the speed at which
it sends requests in order to optimize the performance of the system.

• Load balancing: The client may need to use load balancing
techniques to distribute requests evenly across multiple servers or
processing elements.

• Queues: The client may need to use queues to manage requests and
ensure that they are processed in an orderly manner.

On the server side:

• Many clients: The server may need to handle requests from many
clients simultaneously, which can impact its performance and
efficiency.

• Session state: The server may need to maintain session state
information in order to track the progress of individual requests.

• Authentication: The server may need to authenticate clients
• Authorization: The server may need to authorize clients to access
specific resources or perform certain actions.

• Privacy: The server may need to ensure that client data is kept
private and secure.

• Sync/async: The server may be able to process requests
synchronously or asynchronously, which can impact the overall
performance of the system.

• Blocking: The server may block requests while they are being
processed, which can impact the performance of the system.

• Single/multicore CPU intensive: The server may be able to use
multiple cores or processors to process requests in parallel, or it may
be limited to processing requests serially on a single core.

• Queues: The server may need to use queues to manage requests and
ensure that they are processed in an orderly manner.

Between both: Bandwidth/latency; The bandwidth and latency of the
network connection between the client and the server can impact the
performance and efficiency of the system.

36



Stateful vs Stateless Systems (The Stateful Server Problem)

The stateful server problem refers to the trade-offs that must be
considered when designing and implementing a server-based system that
maintains state information.

On the one hand, stateful servers have several advantages:

• Data locality: Stateful servers can store data locally, which can
improve the performance of the system by reducing the need to
fetch data from external storage.

• Consistency: Stateful servers can ensure that data is consistent and
up-to-date, which can be important in certain applications.

However, stateful servers also have some disadvantages:

• Availability: Stateful servers may be less available than stateless
servers, as they may be more vulnerable to failures or downtime.

• Load balancing: Stateful servers may be more difficult to load
balance than stateless servers, as they must maintain state
information for individual clients.

Stateless design, on the other hand, stores all data in external storage
such as databases or caches, which can make it easier to design and
implement the system. However, in the event of failures, programming
stateless systems can be more difficult, as all data must be retrieved from
external storage.

37



Terminology for Client/Server Systems

• Host: A physical machine with n CPUs.
• Server: A process running on a host that receives messages, performs
computations, and sends messages (not necessarily responses).

• Thread: An independent computation context within a process,
which can be pre-empted by the kernel (kernel-thread) or yield
voluntarily (application-level scheduling).

• Multi-threading: The use of multiple threads within a single process
context. This can be achieved using kernel-level threading (where
the kernel switches between threads) or using multiple kernel
threads running in parallel on a multi-core system.

• Multi-channel: A thread that is able to watch multiple channels
using a single system call, such as a select () call.

• Synchronous processing: A caller calls a function and waits for its
results, doing nothing while waiting.

• Asynchronous processing: A caller calls a function and immediately
continues executing its own code. The called function is eventually
executed, and a callback function is called to inform the caller about
the completion.

• Parallel processing: The deterministic execution of independent
code paths.

• Blocking: A thread calls a function that needs time to complete, such
as fetching a resource from disk. The thread cannot continue and
blocks an execution core while waiting for the result. The thread is
“context switched” and a new code path is loaded and executed by
the core.

• Non-blocking calls: A caller calls the non-blocking version of a
function. If the function can perform immediately without delaying
the caller, it will do so. If the function needed time to perform its job,
it will allow the caller to return immediately and inform it that it
would be blocked. The caller can then decide to do something else
and try again later (poll again).

• Synchronization: The control of access to shared data by multiple
threads in order to prevent data inconsistencies.

38



Overarching Client/Server Architectures

• Multi-Tier System: This type of architecture involves splitting up the
system into multiple layers or tiers, each of which performs a
specific set of functions. The tiers may include a presentation layer, a
business logic layer, and a data storage layer, among others.

• Large fan-out Architectures: This type of architecture involves a
central component that receives requests from many clients and
distributes them to multiple servers or other resources. This can
allow the system to scale more easily and handle a large volume of
requests.

• Pipeline (SEDA): This type of architecture involves breaking up the
processing of a request into multiple stages, each of which is
handled by a separate component. The stages are connected in a
pipeline, with each stage processing the request and passing it on to
the next stage.

• Offline Processing: This type of architecture involves processing
requests and tasks in an offline or deferred manner, rather than in
real-time. This can be useful in situations where the workload is too
large to handle in real-time, or where real-time processing is not
required.

39



Different Process Models

• Single Thread/Single Core: This type of process model involves a
single thread of execution running on a single core. This can be
efficient for certain types of workloads, but may not be able to take
full advantage of multiple cores or processors.

• Multi-Thread/Single Core: This type of process model involves
multiple threads of execution running on a single core. This can
allow the system to perform multiple tasks concurrently, but may not
be able to fully utilize the processing power of multiple cores or
processors.

• Multi-Thread/Multi-Core: This type of process model involves
multiple threads of execution running on multiple cores or
processors. This can allow the system to fully utilize the processing
power of multiple cores or processors, and can be more efficient for
certain types of workloads.

• Single Thread/Multi-Process: This type of process model involves a
single thread of execution running within each of multiple processes.
This can allow the system to take advantage of multiple cores or
processors, but may be less efficient than other models for certain
types of workloads.

40



Questions for Process Models

• Can it use available cores/CPUs?
• What is the ideal number of threads?
• How does it deal with delays/(b)locking?
• How does it deal with slow requests/uploads?
• Is there observable non-determinism aka race conditions?
• Is locking/synchronization needed?
• What is the overhead of context switches and memory?

41



Amdahl’s Law

According to Amdahl’s Law, the maximum improvement in overall system
performance that can be achieved by improving a particular part of the
system is limited by the fraction of time that the improved part of the
system is used. In other words, if only a small portion of the system’s
workload is affected by the improvement, the overall improvement in
performance will also be small.

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 1
(1−𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛+ 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

For example, if a particular part of a system is improved so that it runs
twice as fast, but that part of the system is only used 10% of the time, the
overall improvement in system performance will be limited to a 10%
increase. On the other hand, if the improved part of the system is used
50% of the time, the overall improvement in performance will be much
larger, at 50%.

Amdahl’s Law is often used to understand the potential benefits and
limitations of optimizing or improving specific parts of a system. It can be
a useful tool for determining how much resources should be invested in
improving a particular part of the system, and for understanding the
potential impact of those improvements on overall system performance.

42



Different I/O Models

• Synchronous Blocking (Java before NIO/AIO): Prior to the
introduction of the Java New I/O (NIO) and Asynchronous I/O (AIO)
APIs, Java had a different model for handling input/output (I/O)
operations. This model involved using threads to block and wait for
I/O operations to complete, which could be inefficient and consume
a lot of system resources.

• Synchronous Non-Blocking (Polling pattern): The polling pattern is a
way of handling I/O operations in which a central component
periodically checks for the completion of I/O operations. This can be
done by repeatedly calling a function that checks the status of the
operation, or by using a timer to trigger the check at regular intervals.

• Asynchronous Blocking (Reactor pattern): The Reactor pattern is a
way of handling I/O operations in which a central component is
notified when an I/O operation is completed, rather than periodically
checking for its completion. This can be more efficient than the
polling pattern, as it allows the system to respond to I/O operations
as soon as they are completed, rather than waiting for a periodic
check.

• Asynchronous Non-Blocking (Proactor pattern): The Proactor pattern
is similar to the Reactor pattern, but it is designed to handle
high-concurrency environments where many I/O operations are
occurring simultaneously. It uses a combination of asynchronous I/O
and event-driven design to allow for efficient handling of multiple
I/O operations at once.

43



Questions for I/O Models

• Can it deal with all kinds of input/output?
• How are synchronous channels integrated?
• How hard is programming?
• Can it be combined with multi-cores?
• Scalability through multi-processes?
• Race conditions possible?

44



Message Protocols



Overview

1. Message protocols
1.1 Delivery guarantees in point-to-point communication
1.2 Reliable broadcast
1.3 Request ordering and causality

2. Programming client-server systems using sockets

45



The Role of Delivery Guarantees

Shop order: The scenario described involves an online shop in which
orders are placed and processed. The goal is to ensure that orders are
delivered correctly and efficiently, regardless of any potential issues that
may arise.

• TCP Communication properties: TCP (Transmission Control Protocol)
is a networking protocol that is used to establish and maintain
communication between devices over a network. It has several key
properties that are relevant to the scenario described, including
reliability, flow control, and congestion control.

• At-least-once: The “at-least-once” delivery guarantee means that a
message may be delivered more than once, but it will always be
delivered at least once. This can be useful in situations where it is
more important to ensure that a message is delivered, even if it may
be duplicated, than it is to prevent duplicates from occurring.

• At-most-once: The “at-most-once” delivery guarantee means that a
message will be delivered at most once. This can be useful in
situations where it is more important to prevent duplicates from
occurring than it is to ensure that a message is always delivered.

• Exactly once: The “exactly once” delivery guarantee means that a
message will be delivered exactly once, with no duplicates. This can
be more difficult to achieve than the other delivery guarantees, as it
requires additional complexity and overhead to ensure that
duplicates are prevented.

• Message complexity: The number of messages sent refers to the
total number of messages that are transmitted as part of the
communication process. In the scenario described, the number of
messages sent may affect the efficiency and reliability of the
communication process, and may need to be taken into account
when determining the appropriate delivery guarantee to use.

46



Why is TCP not Enough?

While TCP (Transmission Control Protocol) is a widely used networking
protocol that provides a reliable communication channel between devices,
it is not always sufficient on its own to ensure proper behavior in all
situations. Here are some reasons why TCP may not be enough:

• Lost messages retransmitted: TCP includes mechanisms for
retransmitting lost messages, which can help to improve the
reliability of communication. However, if messages are frequently
lost or the network is particularly unreliable, the overhead of
retransmitting lost messages may become a burden on the system.

• Re-sequencing of out of order messages: TCP includes mechanisms
for reordering out-of-order messages, which can help to ensure that
messages are delivered in the correct order. However, if messages
are frequently delivered out of order, this can be inefficient and may
cause issues with the overall communication process.

• Sender choke back (flow control): TCP includes flow control
mechanisms that allow the sender to adjust its rate of transmission
based on the capacity of the receiver. However, if the sender is
sending messages too quickly, this can lead to congestion on the
network and reduced performance.

• No message boundary protection: TCP does not provide any
protection for message boundaries, which means that messages may
be broken up or combined during transmission. This can make it
difficult to ensure that messages are delivered in their entirety and
can cause issues with the overall communication process.

• Timeout problem: TCP includes mechanisms for detecting and
handling connection failures, but these mechanisms may not be
sufficient in all situations. For example, if a connection is lost due to
a timeout, it may take some time to detect and recover from the
failure, which can lead to delays and disruptions in the
communication process.

To address these and other issues, it may be necessary to use additional
protocols or techniques, such as message-oriented middleware or
application-level protocols, to ensure proper behavior in case of
connection failures and to provide additional features and guarantees for
message delivery.

47



Different Levels of Timeouts

• Business-Process-Timeout: This timeout is set at the business
process level and is used to ensure that a business process does not
get stuck or take too long to complete. This timeout may be
triggered if a particular task or operation within the process takes
longer than expected to complete, or if the process as a whole takes
too long to finish.

• RPC-Timeout (order progress): This timeout is set at the level of
remote procedure calls (RPCs) and is used to ensure that RPCs do
not get stuck or take too long to complete. This timeout may be
triggered if an RPC takes longer than expected to complete, or if the
progress of an RPC is not being monitored properly.

• TCP-Timeout (reliable channel): This timeout is set at the TCP
(Transmission Control Protocol) level and is used to ensure that the
reliable communication channel provided by TCP is functioning
properly. This timeout may be triggered if a connection is lost or if
the channel becomes congested or otherwise unstable.

48



Delivery Guarantees for RPCs

• Best effort: The “best effort” delivery guarantee means that no
specific guarantees are made about the delivery of requests or
responses. This means that requests may be lost or responses may
not be received, and there is no mechanism in place to ensure that
this does not happen.

• At least once: The “at least once” delivery guarantee means that a
request may be delivered more than once, but it will always be
delivered at least once. This can be useful in situations where it is
more important to ensure that a request is delivered, even if it may
be duplicated, than it is to prevent duplicates from occurring.

• At most once: The “at most once” delivery guarantee means that a
request will be delivered at most once. This can be useful in
situations where it is more important to prevent duplicates from
occurring than it is to ensure that a request is always delivered.

• Once and only once/exactly once: The “once and only once” or
“exactly once” delivery guarantee means that a request will be
delivered exactly once, with no duplicates. This can be more difficult
to achieve than the other delivery guarantees, as it requires
additional complexity and overhead to ensure that duplicates are
prevented.

49



Overview

Idempotency is a property of operations or requests that ensures that
they can be safely repeated without changing the result of the operation.
In other words, if an operation is idempotent, it will have the same result
whether it is performed once or multiple times.

• The first request needs to be idempotent: In a sequence of requests,
it is important that the first request is idempotent. This ensures that
the first request can be safely repeated if it fails or is lost, without
affecting the overall result of the operation.

• The last request can be only best effort
• Messages may be reordered

50



Server State and Idempotency

Idempotency is an important property to consider when designing
operations or requests that may be repeated or delivered multiple times,
as it can help to ensure that the operation or request is able to be safely
repeated without affecting the overall result. Here are some additional
considerations related to idempotency and server state:

• No need to remember a request and its result: If an operation or
request is idempotent, the server does not need to remember the
request or its result. This can be useful in situations where the
server’s storage is limited or unreliable, as it means that the server
does not need to maintain a record of all previous requests and their
results.

• Server can lose its storage: If the server’s storage is lost or becomes
unavailable, it should not affect the overall result of the operation or
request, as long as the operation or request is idempotent. This can
help to ensure that the operation or request is able to be safely
repeated even if the server’s storage is lost.

• Concurrent updates might be consistent without concurrency
control: If an operation or request is idempotent, it is possible that
concurrent updates to the same data may be consistent without the
need for concurrency control mechanisms such as locks or
transactions. This can help to improve the efficiency and
performance of the system.

51



Implementing Delivery Guarantees for Idempotent Requests

• “At least once” implementation for idempotent requests: For
idempotent requests, the “at least once” delivery guarantee can be
implemented by simply sending an acknowledgement (ack) to the
client after the request has been received. This approach does not
require any updates to the server state, and is suitable for requests
that do not have any critical side effects.

• “At most once” implementation for nonidempotent requests: For
nonidempotent requests, the “at most once” delivery guarantee can
be implemented by storing a response on the server until the client
confirms that it has been received. This approach requires the server
to maintain state for each response, and may involve adding a
request number to each request to help the server detect and
discard duplicate requests.

• “Exactly once” implementation: The “exactly once” delivery
guarantee is not possible to achieve in asynchronous systems with
network failures. However, it can be approximated using techniques
such as two-phase commit and epoch numbers, which allow the
client and server to coordinate their actions and ensure that they do
not forget their decisions. This approach may involve maintaining an
atomic log on both the client and server, and storing responses on
the server until they are confirmed by the client

52



Repeating Non-Idempotent Operations

If an operation is not idempotent, it means that it cannot be safely
repeated multiple times and is likely to have unintended side effects. In
this case, there are several measures that can be taken to ensure reliable
communication:

• Use a message ID to filter for duplicate sends: By including a unique
message ID in each request, the server can filter out duplicates and
only execute the request once.

• Keep a history list of request execution results on the server: If the
reply to a request is lost, the server can retransmit the result from its
history list. This helps to ensure that the client receives the correct
result even if the initial reply was lost.

• Lease resources on the server: In some cases, it may be necessary to
keep state on the server in order to facilitate communication. For
example, a client may “lease” resources on the server for a specific
period of time. This can help to ensure that resources are used
efficiently and released when they are no longer needed.

It is important to carefully manage state on the server in order to avoid
overloading the system with old replies. It may be necessary to set limits
on how long to store old replies and when to discard them.

53



Request Order in Multi-Point-Protocols

• No request order from one sender: In a multi-point protocol, there is
no guaranteed order for requests sent by a single sender. This
means that requests may be received and processed in a different
order than they were sent, and the sender should be prepared to
handle this possibility.

• No request order between different senders: In a multi-point
protocol, there is no guaranteed order for requests sent by different
senders. This means that requests from different senders may be
received and processed in a different order than they were sent, and
the senders should be prepared to handle this possibility.

• No request order between independent requests of different
senders: In a multi-point protocol, there is no guaranteed order for
independent requests sent by different senders. This means that
independent requests from different senders may be received and
processed in a different order than they were sent, and the senders
should be prepared to handle this possibility.

54



Request Ordering with Multiple Nodes

In a multi-node system, it may be necessary to use a reliable broadcast
protocol to ensure that requests are processed in the desired order. Here
are some examples of protocols that can be used for request ordering
with multiple nodes:

• Reliable Broadcast: Reliable broadcast is a protocol that ensures
that a message is delivered to all nodes in the system, and that it is
delivered in the same order to all nodes. This can help to ensure
that requests are processed in the correct order, even if they are sent
from different nodes or if there are delays or other issues with the
network.

• FIFO Cast: FIFO cast is a protocol that ensures that messages are
delivered in the order in which they were sent, with the first message
sent being the first one to be delivered. This can help to ensure that
requests are processed in the correct order, even if they are sent
from different nodes or if there are delays or other issues with the
network. This can still lead to causal inconsistencies!

• Causal Cast: Causal cast is a protocol that ensures that messages are
delivered in a causally consistent order, based on the dependencies
between the messages. This can help to ensure that requests are
processed in the correct order, even if they are sent from different
nodes or if there are delays or other issues with the network.

• Absolutely Ordered Casts: Absolutely ordered casts is a protocol that
ensures that messages are delivered in a totally ordered sequence,
with no uncertainty about the order in which the messages were
sent. This can help to ensure that requests are processed in the
correct order, even if they are sent from different nodes or if there
are delays or other issues with the network.

55



Implementing Causal Ordered Broadcasts

• Piggybacking previous messages: One solution for implementing
causal ordered broadcasts is to piggyback every message sent with
the previous messages. This means that when a message is sent, it is
accompanied by the previous messages that it depends on. This can
help to ensure that processes that may have missed a message can
learn about it with the next incoming message and then deliver it
correctly.

• Sending event history with every message: Another solution for
implementing causal ordered broadcasts is to send the event history
with every message. This can be done using techniques such as
vector clocks, which are used to track the dependencies between
events in a distributed system. With this approach, messages are not
delivered until the order is correct. This can help to ensure that
messages are delivered in the correct order, even if there are delays
or other issues with the network. 56



Implementing Absolutely Ordered Casts

• All nodes send messages to every other node: One solution for
implementing atomic broadcasts is for all nodes to send their
messages to every other node in the system. This ensures that all
nodes have a complete set of messages, which can be used to
determine the total order of the messages.

• All nodes receive messages, but wait with delivery: After receiving all
of the messages, all nodes can wait with delivery until the total order
of the messages has been determined.

• One node is selected to organize the total order: To determine the
total order of the messages, one node can be selected to organize
the messages into a total order. This node can use a variety of
techniques, such as vector clocks or Lamport timestamps, to
determine the order of the messages.

• The node sends the total order to all nodes: Once the total order
has been determined, the node can send the total order to all other
nodes in the system.

• All nodes receive the total order and deliver their messages: Finally,
all nodes can receive the total order and deliver their messages
according to the determined order.

There are however disadvantages with these implementations:

• May have high overhead: This solution may have high overhead, as it
requires all nodes to send and receive messages from every other
node in the system. This can be particularly problematic in large
systems with many nodes, as it may result in many messages being
transmitted and processed.

• May have high latency: This solution may also have high latency, as it
requires all nodes to wait for the total order to be determined before
delivering their messages. This can be particularly problematic in
systems where low latency is critical.

57



Properties of Sockets

Sockets are a programming interface that enables communication
between networked computers. They are used to send and receive data
over a network connection using either TCP (Transmission Control
Protocol) or UDP (User Datagram Protocol) connections.

Socket properties include:

• Using either TCP or UDP connections: Sockets can use either TCP or
UDP connections to communicate with other computers over a
network. TCP provides a reliable, connection-oriented
communication channel, while UDP provides a connectionless,
unreliable communication channel.

• Serving as a programming interface: Sockets provide a programming
interface that enables applications to send and receive data over a
network connection. They are typically used in conjunction with
other programming constructs, such as threads or event loops, to
enable concurrent communication and data processing.

• A specification of “Host”, “Port”, “Connection type”: Sockets are
identified by a combination of a host, port, and connection type. The
host specifies the address of the computer on which the socket is
running, the port specifies a specific communication endpoint on the
host, and the connection type specifies whether the socket is using
TCP or UDP.

• A unique address of a channel endpoint: Each socket is assigned a
unique address that identifies it as a communication endpoint. This
address is used to identify the socket when sending or receiving data
over the network.

58



Berkeley Sockets

Berkeley sockets provide a set of primitives or functions that can be used
to create, manage, and manipulate network connections and
communication channels.

Here is a brief description of the meaning of each of the Berkeley Sockets
primitives:

• Socket: The socket primitive creates a new communication endpoint,
or socket, that can be used to send and receive data over a network
connection.

• Bind: The bind primitive attaches a local address to a socket,
specifying the address and port on which the socket will listen for
incoming connections or data.

• Listen: The listen primitive announces the willingness of a socket to
accept incoming connections from other hosts.

• Accept: The accept primitive blocks the caller until a connection
request arrives at the socket. When a connection request is received,
it creates a new socket for the connection and returns a reference to
the new socket.

• Connect: The connect primitive actively attempts to establish a
connection to a remote host by sending a connection request to the
remote host.

• Send: The send primitive sends some data over the connection
associated with a socket.

• Receive: The receive primitive receives some data over the
connection associated with a socket.

• Close: The close primitive releases the connection associated with a
socket, allowing it to be used for other purposes.

59



Server Side Processing using Processes

Server-side processing using processes is a model for handling incoming
requests in a networked system. It involves the following steps:

1. Server: The server listens on a specified port, waiting for incoming
connection requests.

2. Client: A client connects to the server on an arbitrary port and
establishes a connection between the client and the server.

3. Server: The server accepts the connection request and spawns a new
process to handle the request. The process is assigned to the same
port as the original connection, and the server goes back to listening
for new connection requests.

This model allows the server to scale to some degree, as it can handle
multiple requests concurrently by spawning new processes to handle each
request. However, process creation can be expensive, and there may be
limits on the number of processes that can be created on a given system.
An example of this model is traditional CGI processing in a web server,
where a new process is spawned to handle each incoming request.

60



Server Side Processing using Threads

Server-side processing using threads is a model for handling incoming
requests in a networked system that is similar to the process-based
model, but uses threads instead of processes to handle requests. It
involves the following steps:

1. Server: The server listens on a specified port, waiting for incoming
connection requests.

2. Client: A client connects to the server on an arbitrary port and
establishes a connection between the client and the server.

3. Server: The server accepts the connection request and spawns a new
thread to handle the request. The thread is assigned to the same
port as the original connection, and the server goes back to listening
for new connection requests.

This model allows the server to scale well, as it can handle multiple
requests concurrently by spawning new threads to handle each request.
Thread creation is less expensive than process creation, and it is possible
to create a larger number of threads on a given system. An example of
this model is servlet request processing in a servlet engine, also known as
a “web container”.

In a threaded server, it is important to ensure that the functions that are
used to handle incoming requests are re-entrant, or able to be safely
called concurrently by multiple threads. This is because multiple threads
may be executing the same function simultaneously, and the function
must be able to handle this without causing problems.

To ensure that functions are re-entrant, it is important to avoid using
unprotected global variables, as these can be modified concurrently by
multiple threads, leading to potential race conditions and other problems.
Instead, state should be kept on the stack, with each thread having its
own copy of the state. This ensures that each thread has its own private
version of the state, and can operate independently of other threads.

61



Design Considerations for Socket-Based Services

• Message formats: The message formats that will be exchanged
between clients and servers should be carefully designed to ensure
that data can be transmitted and received correctly. This includes
ensuring that data is represented consistently on different hardware
platforms and avoiding problems caused by different data
representations.

• Protocol design: The protocol that will be used by clients and servers
to communicate should also be carefully designed. This includes
deciding whether clients will wait for answers from the server
(synchronous communication) or whether communication will be
asynchronous, whether the server can call back to the client,
whether the connection will be permanent or closed after each
request, whether the server will hold client-related state (e.g. a
session), and whether the server will allow concurrent requests.

62



Stateless vs. Stateful Socket-Based Services

A stateless service is one in which the server does not store any
information about previous requests or maintain any state between
requests. This can have several advantages, including:

• Scaling extremely well: Because the server does not maintain any
state between requests, it can handle a large number of requests
concurrently without running out of resources or becoming
overloaded.

• Making denial of service attacks harder: Because the server does not
maintain any state between requests, it is more resistant to denial of
service attacks, as attackers cannot exhaust resources by sending a
large number of requests that require the server to store state.

• Forcing new authentication and authorization per request: A
stateless service can require clients to authenticate and authorize
each request separately, improving security by requiring clients to
prove their identity and permissions for each request; this can
however also be a disadvantage, as it requires a significant overhead
to transfer the authn credentials each time.

On the other hand, a stateful service is one in which the server stores
information about previous requests and maintains state between
requests. This can have several advantages, including:

• Allowing transactions and delivery guarantees: Because the server
maintains state between requests, it is possible to use transactions
and guarantee delivery of requests.

• Enabling more complex interactions: A stateful service can support
more complex interactions between clients and servers, as it allows
the server to track the state of the interaction and respond
appropriately.

However, stateful services can also have some drawbacks, including:

• Risk of resource exhaustion: Because the server maintains state
between requests, it is possible for the server to run out of
resources, such as sockets, if it receives many requests that require it
to store state.

• Need for reliable hardware and networks: In order to function
correctly, stateful services typically require reliable hardware and
networks, as they rely on the server being able to maintain state
between requests. If the server or network experiences failures, this
can disrupt the stateful interaction.

63



TCP SYN Flooding

TCP SYN flooding is a type of denial of service (DoS) attack that exploits a
weakness in the TCP connection establishment process. In a normal TCP
connection, the client sends a SYN (synchronize) packet to the server to
initiate the connection, and the server responds with a SYN-ACK
(synchronize-acknowledge) packet to confirm that the connection can be
established. The client then sends an ACK (acknowledge) packet to
complete the three-way handshake and establish the connection.

In a TCP SYN flooding attack, the attacker sends a large number of SYN
packets to the server, either from a single machine or from a network of
compromised machines. The server responds to each SYN packet with a
SYN-ACK packet, but the client never completes the three-way handshake
by sending an ACK packet. As a result, the server is left waiting for the ACK
packet, and the resources used to track the half-open connections can be
exhausted, preventing the server from accepting any new connections.

TCP SYN flooding attacks can be mitigated by implementing SYN cookies,
which use cryptographic techniques to allow the server to track half-open
connections without using any resources. Other measures, such as rate
limiting and filtering of incoming SYN packets, can also help to prevent or
mitigate the effects of TCP SYN flooding attacks.

64



Writing a Socket Client & Server

For the server:

1. Define the port number of the service: The server should specify the
port number on which it will listen for incoming connections. For
example, the HTTP server typically listens on port 80.

2. Allocate a server socket: The server creates a server socket and
binds it to the specified port number. The server socket then listens
for new connections.

3. Accept an incoming connection: When a client attempts to connect
to the server, the server socket accepts the connection and creates a
new socket for the client connection.

4. Get the input channel: The server reads the input channel from the
socket to receive messages from the client.

5. Parse the client message: The server parses the client message to
understand the request being made.

6. Get the output channel: The server gets the output channel from the
socket, which is where it will send responses to the client.

7. Do request processing: The server processes the client request,
either by handling it directly or by creating a new thread to handle it.

8. Create a response message: The server creates a response message,
such as an HTTP response, to send back to the client.

9. Write the message to the output channel: The server writes the
response message to the output channel, which sends it back to the
client.

10. Read new messages or close the connection: The server can either
read new messages from the client’s input channel or close the
connection if it is no longer needed.

For the client:

1. Define the hostname and port number of the server host
2. Allocate a socket with the host and port parameters
3. Obtain the input channel (for messages from the server) and output
channel (for messages to the server) from the socket

4. Create a message to send to the server, such as “GET /somefile.html
HTTP/1.0”

5. Write the message to the output channel to send it to the server
6. Read the response from the input channel and display it

For a multithreaded client:

• One thread reads from the console and writes to the output channel
• The other thread reads from the input channel and displays or writes
the server messages

65



Distribution Transparency with Sockets

• Invocation: Server-side functions cannot be called directly from the
client side, and messages must be defined and sent using socket
operations

• Location/relocation/migration: If the service moves, the client
connection will be broken

• Replication/concurrency: Not supported
• Failure: Not supported
• Persistence: Not supported

66



Infrastructure of Client-Server Systems

1. Directory: Helps locate the server
2. Proxy: Checks client authorization and routes requests through the
firewall

3. Firewall: Allows outgoing calls only
4. Reverse proxy: Caches results, ends SSL sessions, and authenticates
clients

5. Authentication server: Stores client data and authorizes clients
6. Load balancer: Distributes requests across servers

67



Remote Procedure Calls



Overview

1. Call versions: local, inter-process, and remote
2. Mechanics of remote calls:

2.1 Marshaling/serialization
2.2 Data representation
2.3 Message structure and schema evolution
2.4 Interface definition language
2.5 Tooling: generators

3. Cross-language call infrastructures: Thrift and gRPC

68



Call Versions

1. Local calls: made within a single process and do not require network
communication

2. Inter-process calls: Made between processes on the same machine
and can be implemented using a variety of mechanisms, such as
shared memory or pipes

3. Remote calls: Made between processes on different machines and
typically require network communication

69



Remote Calls vs. Remote Messages

• Remote calls: Hide the remote service calls behind a programming
language call and are tightly coupled with synchronous processing

• Remote messages: Use a message-based middleware and create a
new concept of a message and its delivery semantics; a message
system can simulate a call-based system, but not vice versa

70



In-Process (Local) Calls

• No special middleware is required for calls made within the same
programming language

• Calls into the OS are not inter-process calls
• Special attention is required for cross-language calls made within a
single process, such as calls to native code in Java

• In-process calls are fast because they do not require network
communication or context switches between processes.

• Have “exactly once” semantics, meaning that they will be executed
only once and will not be retried if they fail.

• Are type-safe and link-safe, meaning that they are checked for type
compatibility at compile time and will not result in linker errors.
However, they may have issues with dynamic loading if the called
code is not available at runtime.

• Can be either sequential or concurrent, depending on the design of
the application. Concurrent in-process calls can be implemented
using threads or other concurrency mechanisms.

• Operate within a single name and address space, which means that
they can access all variables and functions within the process
without requiring additional addressing or mapping.

• Are independent of byte ordering, which means that they can be
used on any machine with any endianness without requiring
additional conversions.

• Can be controlled in their memory usage, such as through garbage
collection, which can help prevent memory leaks and improve the
performance and stability of the application.

• Can use value or reference parameters, depending on the needs of
the application. Value parameters are copied when passed to a
function, while reference parameters are passed by address and can
be modified within the called function.

• Are transparent programming language calls and not explicit
messages, which means that they appear to the programmer as
regular function calls and do not require the creation and handling
of explicit messages.

71



Inter-Process Calls (IPC)

• Local inter-process calls are faster than remote calls, but not as fast
as in-process calls

• Do not have “exactly once” semantics
• Are type-safe and link-safe if both processes use the same static
libraries, but may have issues with dynamic loading

• Can be either sequential or concurrent, but the caller no longer
controls the execution; the receiver must protect itself from
concurrent access

• Cannot assume a single name and address space and require
additional addressing or mapping

• Are still independent of byte ordering
• Require cross-process garbage collection to manage memory usage
• Can only use value parameters, as the target process cannot access
memory in the calling process

• Are not real programming language “calls” and require the creation
of messages to simulate the missing features

• Inter-process communication is not local and introduces latency,
memory barriers, and the possibility of process failures

The good news is that inter-process communication occurs on the same
hardware and uses the same language at the sender and receiver, which
can reduce security issues and ensure that a system crash affects both
sender and receiver (fail-stop semantics)

72



Remote Procedure Calls (RPC)

• Remote procedure calls (RPCs) are much slower than local calls and
do not have delivery guarantees without a protocol

• May have version mismatches that show up at runtime
• Are concurrent and the caller no longer controls the execution; the
callee must protect itself from concurrent access

• Cannot assume a single name and address space and require
additional addressing or mapping

• Are affected by byte ordering
• May require network garbage collection if they are stateful
• May involve cross-language calls
• Can only use value parameters, as the target process cannot access
memory in the calling process

• Are not real programming language “calls” and require the creation
of messages to simulate the missing features

• Often stateless 73



Overview

• Marshaling/Serialization: Process of converting program data into a
format that can be transmitted over a network

• External Data-Representation: Standardized format for representing
binary data

• Interface Definition: Defines a service, a set of related functions that
can be accessed remotely

• Message Structure and Evolution: Way in which data is organized
and transmitted between systems

• Compilers: Generate code (stub/skeleton or proxy) to facilitate
communication between systems

• Request/Reply Protocol: Handles errors that may occur during the
remote call process

• Process/I/O Layer: Responsible for managing threads and
input/output operations

74



Marshaling/Serialization

Marshaling/serialization is the process of converting parameters (basic
types or objects) into a common transfer format (message) that can be
transmitted over a network. At the target site, the message is transformed
back into the original types or objects. There are several different
approaches to marshaling/serialization, each with its own trade-offs:

• Language-dependent output format: This approach uses a
proprietary format that is specific to a particular programming
language. It may be slower and have limitations in expressiveness,
but it can be more efficient in terms of the size of the message.

• Language-independent output format: This approach uses a
standardized format that is not tied to any particular programming
language. It may be more verbose and result in larger messages, but
it is more flexible and can be used with a wider range of languages.

• Binary schema-based: In this approach, the sender and receiver
both have a shared understanding of the structure of the message,
including the types and variables contained within it. Function
names are replaced with numbers and variable data is encoded to
save space. This approach is efficient in terms of message size, but it
can be inflexible.

• Binary self-describing: In this approach, the message contains
information about its own structure, including the types and
variables contained within it. This allows for more flexibility, but it
requires the involved languages to have some level of flexibility in
their capabilities.

• Textual, self-describing: This approach uses an XML representation
of the types or objects contained in the message. It is flexible, but it
can be verbose and result in larger messages.

• Textual with schema for reader/writer: This approach uses a schema
to define the structure of the message, which allows for advanced
schema evolution and dynamic serializations. It can be flexible, but
it may result in larger messages.

Serialization to text is a method of converting data into a human-readable
format, typically using a markup language such as XML. This approach can
be less efficient in terms of the size of the resulting message, as it is
generally less compact than binary serialization. It is important to be
aware of language limits, such as the range of integers and floating-point
numbers that can be represented in JavaScript, when using this approach.
XML is a popular choice for language-independent encoding because it is
widely supported and can represent a wide range of data types.

Serialization to binary is a method of converting data into a compact,
machine-readable format. It requires a schema, which defines the
structure of the message and the types of data it contains. This approach
is generally more efficient in terms of the size of the resulting message,
but it is not as flexible as text-based serialization because it requires a
shared understanding of the schema between the sender and receiver.
Binary serialization can also be used for language-independent encoding.

75



Schema Evolution

When data or functions change, it is important to consider how different
versions of a system will coexist and communicate with each other.

Forward compatibility means that older receivers should be able to
understand messages from newer senders. This allows newer versions of
a system to be deployed without causing problems for existing clients.

Backward compatibility means that newer receivers should be able to
understand messages from older senders. This allows older versions of a
system to continue functioning even after newer versions have been
introduced.

76



Keeping Compatibility when Evolving a Schema

For JSON

Forward compatibility means that older versions of a system should be
able to understand messages from newer versions. Examples of changes
that can be made to a system in a way that maintains forward
compatibility:

• Adding a new required field: Older readers will simply ignore the
new field, so they will be compatible with newer versions.

• Narrowing a numerical type (e.g. float to int): Older readers will
assume ints, which are a subset of floats, so they will be compatible
with the newer int type.

Backward compatibility means that newer versions of a system should be
able to understand messages from older versions. Examples of changes
that can be made to a system in a way that maintains backward
compatibility:

• Adding a field with a default value: Older writers will be unaware of
the new field, so they will use the default value instead.

• Adding an optional field: Older writers will be unaware of the new
field, so they will use the default value (usually null) instead.

• Widening a numerical type (e.g. int to float): Older writers will always
use ints, which are a subset of floats, so they will be compatible with
the newer float type.

• Removing a field: Newer readers will ignore whatever was previously
written in the field that was removed, so they will be compatible with
older versions.

Full compatibility means that a change can be made to a system without
breaking compatibility with either older or newer versions. Examples of
changes that can be made to a system in a way that maintains full
compatibility include:

• Adding a field with a default value
• Adding an optional field

Incompatibility means that a change to a system will break compatibility
with either older or newer versions. Examples of changes that can break
compatibility include:

• Renaming a field
• Changing the type of a field (other than the numeric conversions
mentioned above)

77



Stubs and Skeletons

Stubs and skeletons are code that is used to facilitate communication
between different systems, typically in the context of remote procedure
calls (RPCs). Stubs are used by clients to initiate a remote call, while
skeletons are used by servers to receive and process the remote call.

There are several ways to generate stubs and skeletons, including:

• • Generating them in advance from an interface definition language
(IDL) file: In this approach, the stubs and skeletons are generated
from an IDL file, which defines the interfaces and data structures that
are used for communication. The IDL file is used as a blueprint for
generating the code.

• Generating them on demand from a class file: In this approach, the
stubs and skeletons are generated from a class file, which defines
the classes and methods that are used for communication. The class
file is used as a blueprint for generating the code.

• Distributing them in advance to all clients and servers: In this
approach, the stubs and skeletons are generated in advance and
distributed to all the clients and servers that will be using them. This
allows the systems to be set up and configured in advance, rather
than on demand.

• Downloading them on demand: In this approach, the stubs and
skeletons are downloaded by the clients and servers as needed,
rather than being distributed in advance. This allows for more
flexibility and can be more efficient in terms of bandwidth usage.

78



Finding an RPC Server

In a remote procedure call (RPC) system, a client needs to be able to
locate the server in order to initiate a remote call.

Service:

1. Start listening at port X: The server starts listening for incoming
requests on a specific port.

2. Tell portmapper about program, version, and port: The server
registers itself with the portmapper, which is a service that keeps
track of the programs and ports that are available on the system. The
portmapper is typically a separate daemon that runs on the system.

Client:

1. Ask portmapper for program, version: The client sends a request to
the portmapper asking for the port number of the desired program
and version.

2. The portmapper responds with the port number where the desired
program and version can be found.

3. Send procedure call to service: The client sends the procedure call
to the server on the specified port.

This process is known as “binding,” and there are several ways to handle it,
including using inetd, DCE, or a Unix portmapper.

79



Factors to Consider when Choosing an IDL

• Are data types easily expressed using the IDL? It is important to
choose an IDL that can easily represent the types of data that will be
used in the RPC system.

• Is hard or soft versioning used? Hard versioning means that the IDL
is strictly enforced, and any changes to the IDL will break
compatibility. Soft versioning means that the IDL is more flexible and
can be changed without breaking compatibility.

• Are structures self-describing? Self-describing structures contain
enough information to be understood by any system, even if it is not
familiar with the specific structure. This can be useful for
maintaining compatibility between different versions of a system.

• Is it possible to change the structures later and keep backward
compatibility? It is important to choose an IDL that allows for
changes to be made to the structures in a way that maintains
backward compatibility with older versions of the system.

• Is it possible to change processing of structures later and keep
forward compatibility? It is important to choose an IDL that allows
for changes to be made to the processing of structures in a way that
maintains forward compatibility with newer versions of the system.

• Are there bindings for all languages in use at my company? It is
important to choose an IDL that has bindings for all the languages
that will be used in the RPC system.

• Do I need different encodings (binary/textual)? It is important to
consider whether binary or textual encoding will be needed for the
RPC system, and choose an IDL that supports the desired encoding.

• Does changing serialization require a recompile? It is important to
consider whether changes to the serialization will require a
recompile, as this can affect the flexibility and ease of maintenance
of the system.

• Can I extend/change the runtime system (e.g. add trace statements)?
It is important to choose an IDL that allows for changes and
extensions to the runtime system, such as the ability to add trace
statements.

80



Popular IDLs for RPCs

• CORBA (Common Object Request Broker Architecture): CORBA is a
standard for interoperating between different programming
languages and platforms. It defines an interface definition language
(IDL) that can be used to describe the interfaces and data structures
that are used for communication, as well as a runtime system for
executing the RPCs.

• Microsoft CLR (Common Language Runtime): The CLR is a runtime
environment for executing .NET programs. It includes a
cross-language call infrastructure that allows programs written in
different .NET languages to communicate with each other.

• Thrift: Thrift is a cross-platform RPC framework that allows different
programming languages to communicate with each other. It includes
an IDL for defining the interfaces and data structures that are used
for communication, as well as code generators for generating the
stubs and skeletons that are used to initiate and process the RPCs.

• gRPC: gRPC is a high-performance RPC framework that uses HTTP/2
as the underlying transport. It includes an IDL for defining the
interfaces and data structures that are used for communication, as
well as code generators for generating the stubs and skeletons that
are used to initiate and process the RPCs.

81



Distributed Objects



Overview

1. Fundamental Properties of Objects
2. Local and remote object references
3. Parameter passing
4. Object invocation types
5. Distributed Object Services
6. Object Request Broker Architectures
7. Interface Design
8. Java RMI

82



Objects vs. Abstract Data Types

• Objects are data structures that combine state (data) and behavior
(methods or functions) in a single entity. They are a key concept in
object-oriented programming (OOP).

• Abstract data types (ADTs) are data structures that are defined by the
operations that can be performed on them, rather than by their
implementation. ADTs are often used to model real-world concepts
or objects.

There are some differences between the two:

• Objects have an identity, which is a unique identifier that
distinguishes the object from other objects in the system. ADTs do
not have an identity in the same way that objects do.

• Objects may store state (data) within themselves, while ADTs do not
store state. Instead, they define the operations that can be
performed on data stored elsewhere.

• Objects may be implemented in different ways depending on the
programming language or system in which they are used. ADTs, on
the other hand, are defined more abstractly and can be
implemented in many ways.

83



Properties of Objects

• Local objects are created with the new() operator and are only
accessible within the scope of their creator.

• An object reference is a unique identifier that is used to locate and
access an object. It is returned when the object is created and can
be used to call the object’s methods.

• Objects have a lifecycle that is tied to their creator. They exist as
long as the virtual machine (VM) is alive and the objects are in use,
and they are typically destroyed when their creator is destroyed.

• Objects have fine-granular interfaces and methods, which means
that they expose a large number of individual functions or
operations that can be performed on them.

• Objects can be small and numerous, which means that there may be
many objects in a system, each with its own state and behavior.

Objects in an object-oriented (OO) programming language do have many
properties that can make them challenging to implement in a concurrent
or distributed system.

84



Challenges for Remote Objects

Remote objects (ROs) are objects that are accessed and managed
remotely, typically over a network. They are a key concept in distributed
object systems, which are systems that enable objects on different
machines to communicate and interact with each other.

• Object identity is usually only valid locally, meaning that it is only
meaningful within the scope of the machine on which the object is
stored. This can make it difficult to identify and access ROs from a
remote machine.

• ROs must be created and managed by a server, rather than by a
client. This is because the client does not have direct access to the
objects and cannot create them using the new() operator.

• Clients must have a way to find and access ROs, which may involve
using a registry or other lookup service.

• Concurrent access to ROs must be controlled to prevent conflicts
and ensure the consistency of the objects’ state. This may involve
using locks, mutexes, or other synchronization mechanisms.

• ROs may have a longer or shorter lifespan than local objects,
depending on how they are managed by the server.

• If a server dies, the ROs it was managing may also be destroyed,
depending on how the system is configured. This could potentially
cause clients to lose access to their objects.

• The state of an RO may be maintained by the server or by the client,
depending on the implementation of the system.

• If a client dies, the ROs it was using may continue to exist on the
server, depending on how the system is configured.

• The cost of using ROs may be higher than using local objects due to
the overhead of communication and synchronization across the
network.

• ROs may have the same interface as local objects, or they may have
a different interface that is tailored to the needs of remote clients.

85



What is a Remote Object?

• A remote object is an object that is accessed and managed remotely,
typically over a network.

• It is a combination of a unique identity, an interface, and an
implementation.

• The unique identity is used to locate and access the object from a
remote machine.

• The interface defines the operations that can be performed on the
object.

• The implementation is the code that defines how the object behaves
and carries out these operations.

• Clients know the interface and use the identity of the remote object,
but do not know about the implementation.

• To clients, the interface of the remote object represents the entire
object.

• Achieving complete transparency of remote calls behind object
interfaces can be challenging in practice, especially in distributed
systems.

86



Object Models and Type Systems

CORBA:

• Defines its own basic types, including sequence, string, array, record,
enumerated, and union.

• Uses value objects (data) to represent data that is passed between
objects.

• Uses remote object references (reference semantics) to locate and
access objects on remote machines.

CORBA is designed to provide language independence, so it defines its
own types and does not allow user-defined classes to be used in the
interfaces of remote objects.

Java RMI:

• Uses the basic types of the Java language, such as int, byte, etc.
• Allows serializable non-remote objects (value semantics) to be used
as value objects.

• Uses remote object references (reference semantics) to locate and
access objects on remote machines.

Java RMI allows user-defined classes to be used as value objects if they
are serializable, but is specific to the Java programming language.

87



Accessing Remote Objects

• A naming service is a service that acts like a directory and allows
clients to look up the location of a remote object based on its name
or other identifier. The client can then use the location information
to access the object.

• A web server can be used to host serialized versions of remote
objects. The client can request the object from the server over the
web and deserialize it to access its methods and state.

• Remote objects can be accessed through other means, such as via
mail or a piece of paper. For example, a client might send a request
for a remote object to another machine via mail or other physical
means, and the server could return the object or a reference to the
object in the same way.

• Another remote object can serve as a “factory” that creates and
manages other remote objects. The client can access the factory
object and use its methods to create and access other remote
objects as needed.

88



The Broker Pattern

• Is a design pattern that involves using a separate component (the
broker) to mediate communication between two other components
(the client and the service).

• Serves as an intermediary between the client and the service and is
responsible for routing requests and responses between them.

• Decouples the client and the service, allowing them to evolve
independently and communicate through the broker.

89



Remote Object Reference

• Object implementation (servant): The object implementation is the
code that defines how the object behaves and carries out its
operations. This is also known as the object’s “servant,” as it serves
the object and carries out its requests.

• Object adapter: The object adapter is a component that manages
the communication between the object implementation and the
object request handler (ORB). It is responsible for routing requests
from the ORB to the object implementation and returning responses
to the ORB.

• Active object map (remote object table): The active object map is a
data structure that maps object identifiers to object
implementations. It is used to locate the object implementation for
a given object identifier.

• Object request handler (ORB): The ORB is the component that
handles requests to and from remote objects. It is responsible for
marshalling and demarshalling requests and responses, as well as
routing requests to the appropriate object adapter.

• Host, port, protcocol, object adapter, object ID: The system-wide
object reference

90



Static vs Dynamic Invocation

Static Remote Method Invocation

• Involves using pre-generated stubs that are linked to the client
program in advance.

• The client program uses the stubs to invoke the remote method in
the same way that it would invoke a local method.

• The stubs handle the details of marshalling and demarshalling the
request and response, as well as routing the request to the
appropriate object on the remote machine.

Dynamic Invocation:

• Involves building a request object at runtime, based on the
meta-information of the remote object.

• The request object is sent to a dispatcher on the servant host, which
handles the request as if it were a normal method invocation.

• The dynamic invocation approach is similar to the reflection pattern,
which involves using meta-information about an object to
manipulate it at runtime.

91



Asynchronous Invocations

• One-way calls: One-way calls are calls that do not expect a response
from the server. They are called “one-way” because they involve only
a single message being sent from the client to the server. One-way
calls cannot have return values or out parameters, and their delivery
is best-effort (meaning that there is no guarantee that the message
will be delivered).

• Deferred synchronous: Deferred synchronous invocations involve
making a call to a remote method and continuing to execute while
the method is being executed. The client can later check for the
results of the method (blocking), but the delivery is at-most-once
(meaning that the message will be delivered at most one time).

• True asynchronous with server callbacks: True asynchronous
invocations involve making a call to a remote method and continuing
to execute while the method is being executed. The server can
differentiate between synchronous and asynchronous calls and can
send a callback message to the client when the results of the
method are available. True asynchronous invocations require
messaging middleware to achieve at-most-once delivery guarantees.

92



Main Distributed Object Services

• Finding objects:
• Naming service: Maps names to object references
• Trading service: Allows objects to offer their services and allows
clients to search for objects by constraint

• Preserving object state
• Persistence service: Stores object state transparently and allows it to
be loaded on demand

• Transaction service: Preserves object consistency across changes to
multiple objects in a distributed, nested, or flat context

• Concurrency service: Provides locks for shared objects
• Security service: Checks the roles of principals

• Grouping of objects: Collections

93



Portable Interceptors

Interceptors can be used to transparently add additional (context)
information to calls and transport it between object request brokers
(ORBs).

94



Remote Interface Design

• Respect the possibility of concurrent calls in your interface design:
Avoid keeping inconsistent state across method calls.

• Avoid the “half-baked object” anti-pattern: Do not perform staged
initialization of an object.

• Avoid using complicated or unclear orders of calls: Design the
interface in a clear and straightforward manner.

95



Problems with Remote Objects

• Interfaces: Remote object interfaces can be too granular, with many
small methods that perform simple tasks. This can lead to slow
performance, as each call to a remote object involves a significant
amount of overhead.

• No direct support for state handling on servers: Distributed object
systems do not generally provide direct support for managing the
state of remote objects on the server side. This can make it difficult
to maintain consistent state across multiple remote objects or to
persist the state of an object across different contexts.

• Bad for “data schlepping” applications: Remote objects are often too
expensive to use in applications that involve “data schlepping,” or the
transfer of large amounts of data between the client and server. This
is because each call to a remote object involves significant overhead,
which can make it inefficient to transfer large amounts of data.

• Cross-language calls expensive to build: Making calls between
objects implemented in different programming languages can be
expensive, as it often requires the use of complex marshalling and
unmarshalling mechanisms to convert data between the different
languages.

• No security in calls: Distributed object systems do not generally
provide built-in security for remote method calls, which can make it
difficult to enforce security policies or protect sensitive data.

• No transaction support: Distributed object systems do not generally
provide built-in support for transactions, which can make it difficult
to ensure the consistency of data across multiple objects in a
distributed system

96



Java RMI Request/Reply Protocols

JRMP (Java Remote Method Protocol) is the first protocol for RMI. It has
the following characteristics:

• Bandwidth problems due to distributed garbage collection with
short term leases and permanent reference counting.

• Allows for the dynamic download of code.

RMI-IIOP (RMI over CORBA’s Internet Inter-Orb Protocol) has the following
characteristics:

• Uses Java Naming and Directory Interfaces (JNDI) to lookup object
references and is persistent.

• Requires code changes and the use of PortableRemoteObject.
• Requires the generation/definition of code and IDL files for CORBA
systems.

• Allows for the movement of IDL files for Java Remote Object
Interfaces to CORBA systems, and the generation of CORBA stubs
with IDL compilers. This allows CORBA systems to call Java remote
objects, or for Java systems to call into CORBA systems.

97



Java RMI Classes & Tools

• Remote: Tag interface that Remote Object Interfaces extend.
• RemoteException: Class that is thrown by all Remote Object
methods.

• Naming: Class that is used by clients to find remote object
references, and by servers to register their objects.

• UnicastRemoteObject: Class that Remote Object Implementations
extend.

• rmic: Tool that generates stub/skeleton/IDL files.
• registry: Simple name server for Java objects.

98



Activation in Java RMI

Activation is an important feature in Java RMI (Remote Method Invocation)
because it allows servers to transparently store servant state on persistent
storage and recreate servants on demand. This helps the server control
its resources against memory exhaustion and performance degradation.

99



Security in Java RMI

• Specify the quality of service (QOS) of sockets used by RMI, such as
using an SSL channel.

• Use an RMISecurityManager to prevent or control local access from
downloaded implementations.

100



Distributed Business Components



Overview

• Part One: General Component Technology covers the following
topics:

• The limitations of traditional object-oriented programming.
• Distributed components.
• Mapping business concepts to programming constructs.

• Part Two: Enterprise Java Beans Example covers the following topics:
• Object model of Enterprise Java Beans (EJBs).
• Basic mechanisms of EJBs.
• Separation of concerns in EJBs, including persistence, transactions,
and security.

• Separation of context in EJBs, including the environment.
• Evolution and lessons learned from EJBs.

101



Problems With Object Interfaces

• Object interfaces are tightly intertwined networks of references that
share state and promises, and changes to these interfaces can have
ripple effects.

• A component framework can simplify the interface for calling objects
by encapsulating them.

• A messaging system can be stateless, or it can include all necessary
state in the message itself, which is known as context-complete
communication. This approach is used in webservices and REST
architectures and is known as Service Oriented Architecture (SOA).

102



Component Based Processing

• Components are self-contained software packages with runtime
interfaces and automatic deployment capabilities that are designed
to fit into a component framework.

• A component framework allows components to be plugged in and
supports the composition and collaboration between them.

• There are roles for development, composition, and installation of
components in the component model.

Enterprise components build on this:

• Integration with existing infrastructure, such as transactions,
security, and legacy systems

• Network addressable interfaces
• Medium to large granularity, potentially representing 10-20 tables or
more

• Representation of a business concept in an isomorphic manner 103



From Objects to Components

1. Object-oriented design involves isolated, monolithic applications
that are not distributed.

2. Distributed objects involve calls between applications, but can have
management and performance issues with large numbers of small
remote objects.

3. Distributed systems involve multi-tier systems with point-to-point
connectivity, but can be expensive and difficult to develop.

4. Distributed components use a framework for pluggable business
components and create a market for interoperable components. This
approach addresses modeling, development, and deployment and
aims to achieve re-use and lower development costs.

Components go beyond distributed systems and were designed to
address some of the same issues as object-oriented development.

104



Business Components

• Business concepts, such as entities and processes, can be translated
into software artifacts like EC1 and PC1.

• Business components are designed to directly represent concepts
from the business and may be represented using the UML “package”
construct.

105



Alternatives to Isomorphic Mapping

• Isomorphic mapping, or the idea that software artifacts directly
correspond to business concepts, may not always be the best
approach.

• Alternatives to isomorphic mapping include domain analysis,
generative computing, and aspect-oriented development.

• In generative computing, different models are used to capture the
transformation process, including computation-independent models,
platform-independent models, and platform-dependent models.

106



Generative Computing

• Involves the use of domain-specific languages and code generators
to automate software development

• Reduces the need for manual coding and allows developers to focus
on design and functionality

• Uses a high-level, abstract description of the desired software,
which is then converted into actual code by a code generator

• Can save time and reduce the risk of errors by eliminating the need
to manually write and debug code

• Often used in domains with repetitive or boilerplate code or where
the complexity of the code makes manual coding impractical

• Can be used to create customizable software for different users or
environments

107



Monolithic Software vs. Components

• Components are clusters of software, configuration, and other
elements that form a unit for deployment and maintenance within a
component framework.

• Components are made up of collaborating elements and can be
adjusted without requiring source code changes. This is an
alternative to traditional applications, which are monolithic and
cannot be easily modified.

108



Objects vs. Components

• A regular object combines business logic with specific mechanisms
such as persistence and hides the internal interfaces behind the
external interface.

• Objects may make assumptions about the environment, such as
which database to use, and these are hidden in the code.

• Customizing objects requires code changes, which can be
time-consuming and risky.

109



Separation of Concerns and Context

• The internal interface of a component is described in
meta-information, which allows deployers to connect the
component to the appropriate framework services.

• Concerns such as persistence and transactions are separated from
the business logic of the component and are typically implemented
by the framework.

• Context information, such as which database to use, is contained in
meta-information rather than in the code of the component.

• This separation of concerns and context allows components to be
customized after development.

110



Overview

• Enterprise Java Beans (EJBs) allow the construction of distributed
applications by combining components from different vendors.

• Developers do not need to understand low-level distributed
mechanisms such as transactions when using EJBs.

• Can run in EJB containers from different vendors without
modification.

• Provide enterprise lifecycle support, including development,
deployment, and runtime support.

• Provide enterprise data support.

111



EJB Component Model

The EJB component model includes four types of EJBs: stateless session
beans, stateful session beans, entity beans, and stateless message-driven
beans.

• Stateless session beans provide stateless services that are shared
among clients.

• Stateful session beans hold conversational state and are not shared
among clients.

• Entity beans map to rows in a database and are shared among
clients. They are used to store and access business data in a
persistent manner.

• Stateless message-driven beans receive messages asynchronously
and can connect to an enterprise MOM.

These different EJB types allow for scalability, client code on the server
side, asynchronous processing, and the representation of business data.
Entity beans are permanent, while stateful session beans do not survive a
server crash.

112



Session Beans (Stateful and Stateless)

• Session beans are per-client objects, except for stateful session
beans which represent client code on the server side.

• Both stateful and stateless session beans can participate in
transactions if the session-synchronization interface is used.

• Session beans may access databases, but do not directly represent
persistent objects.

• Short-lived and are removed when the container crashes.
• Stateless session beans are the most scalable and EJB servers
should be able to support large numbers of them.

113



Entity Beans (Deprecated Since 3.0)

• Entity beans are shared objects that are protected through
transactions.

• They have a longer lifetime than session beans and represent
important business data.

• Entity beans can be persisted through the container mechanism
(Container Managed Persistence, or CMP) or they can handle their
own persistence (Bean Managed Persistence, or BMP).

• Entity beans have a unique identity, which is visible to clients
through a primary key, and clients can request a “handle” which is a
persistent pointer to the entity object.

• In EJB 3.0, persistence is no longer a concern for EJBs and is instead
covered by the Java Persistence API.

114



Message-Driven Beans

• Message-driven beans are invoked asynchronously and do not have
client context available during processing.

• They can be transaction aware, meaning that message receipt and
processing can be enclosed in a single transaction.

• Message-driven beans are short-lived and stateless, and are
removed when the container crashes.

• They do not directly map to business data.
• Message-driven beans have been integrated into the general EJB
framework to reuse EJB container services such as transactions,
security, concurrency, and deployment description.

• If a message-driven bean crashes during processing, the message is
marked as “unread” and can be processed after the container is
restarted.

115



Client View of EJBs

• Clients never access the bean class directly.
• EJBs can offer a remote or local interface to clients (clients of the
local interface must be in the same Java virtual machine as the bean
container).

• The business logic is contained in the bean class.

116



Local vs. Remote Interfaces

• The remote interface of an EJB uses remote object calling
conventions, while the local interface uses local Java calling
conventions.

• When calling the local interface of an EJB, value objects are passed
by reference, meaning the client and EJB will share the same objects.

• The remote interface, on the other hand, requires that value objects
be copied.

• EJB implementers who want to provide both a local and a remote
interface must be aware of these different calling conventions and
design their beans accordingly.

117



Separation of Concerns and Context in EJB

Separation of concerns is done through the EJB framework, separation of
context is done through deployment:

• The automatic transaction management feature maps to system
management transaction modes.

• Persistence maps to system management definitions of data sources
and pool sizes.

• Automatic, method-level security maps to system management
definitions of role/user binding.

• The roles involved in component development, application assembly,
and deployment map to the deployment descriptor and JNDI
interface.

118



The EJB Container

1. A client invokes an entity bean interface.
2. The container delegates the request to the entity bean business
logic.

3. The entity bean business logic delegates tasks such as transactions,
persistence, and security to resources accessed through JDNI and a
database.

At the point of interception, the container provides resource management,
lifecycle, state management, transactions, and security services to the
bean.

• Containers are increasingly taking over roles that were previously
the responsibility of operating systems, such as isolating different
applications from each other.

• In the J2EE environment, class loaders are used for this purpose.
• However, it is believed that a better concept is needed that does not
mix loading with isolation.

119



Containers and Threads

• Containers manage resources across applications and store context
and session information in threadlocal storage.

• As a result, container-managed applications are not allowed to
create their own threads, as these threads would not have the
necessary metadata and context information.

• EJB 3.0 offers a managed service for connectors to create threads,
allowing applications to use threads without having to manage
resources themselves.

• Applications should not assume responsibility for resource
management, as the container is responsible for choosing the
appropriate resource management policy.

120



Entity Bean Container Contract

The Entity Bean-Container Contract defines a set of methods that the
container can call on an entity bean in order to manage its lifecycle and
access resources.

These methods include:

• setEntityContext: Bean stores context as an interface to the
environment

• PrimaryKeyClass ejbCreate: Actions related to bean instance
construction

• ejbPostCreate: Bean identity is now available
• ejbActivate: Bean can acquire necessary resources
• ejbPassivate: Bean releases resources, expecting to be put back into
the pool

• ejbRemove: Last chance for the bean before destruction
• ejbStore: Bean should update its internal state, expecting it to be
synchronized with the database right after this

• ejbLoad: Bean should update its internal state, expecting that its
virtual fields have just been read from the database

• ejbFind, ejbSelect: Query methods generated at deployment
• ejbHome<method>: Business logic that does not require an object
identity

The actions that can be performed in these framework methods depend
on the availability of a transactional context, object identity, local or
remote view, and client security context.

121



Bean Managed vs. Container Managed Persistence

There are two main approaches to persistence in EJBs: bean-managed and
container-managed.

• In bean-managed persistence, the bean is responsible for
performing its own persistence, with the timing of these actions
controlled by the container.

• In container-managed persistence, the bean’s state is completely
stored and loaded by the container.

It is generally believed that container-managed persistence is the
preferred approach in the future, as it is more portable and does not
require adjustments to different datastores. Bean-managed persistence,
on the other hand, is less portable and requires more effort to adapt to
different datastores.

122



JNDI Naming Context

• EJBs locate all their resources through JNDI (Java Naming and
Directory Interface) calls, which allows deployers to specify the
proper services for each EJB through the deployment descriptor.

• This allows the deployer to manipulate all JNDI lookups and
customize the resources that each EJB has access to.

123



Deployment Descriptor

• The deployment descriptor is a file that contains meta-information
about an EJB in XML format.

• This meta-information is used by different components, including
the bean itself (to declare the names and interfaces used), the
deployer (to adjust values for specific environments), and generators
(to generate queries from the meta-information).

124



Security Support

Principal delegation:

• In this mode, the EJB container passes along the identity of the
original caller (client) to the EJB, allowing the EJB to operate under
the same identity as the client.

• This allows the EJB to access resources and perform actions based
on the permissions of the client.

“Run as” identity:

• In this mode, the EJB container assigns a specific identity to the EJB,
regardless of the identity of the original caller.

• This allows the EJB to operate under a specific identity that is
different from the client’s identity, and allows the EJB to access
resources and perform actions based on the permissions of the
assigned identity.

• This can be useful in situations where the EJB needs to perform
actions on behalf of a specific user or group, regardless of the
identity of the client.

125



Transaction Modes

EJBs support several transaction modes, which allow developers to specify
the level of transaction support required by the EJB.

The available transaction modes are:

• Not supported: The EJB does not require or support transactions.
• Required: The EJB requires that a transaction be active when it is
called, and will participate in the existing transaction if one is
already active. If no transaction is active, a new one will be started.

• Supports: The EJB will participate in an existing transaction if one is
active, but it does not require a transaction to be active when it is
called. If no transaction is active, the EJB will execute without a
transaction.

• RequiresNew: The EJB requires a new transaction to be started when
it is called, regardless of whether a transaction is already active.

• Mandatory: The EJB requires that a transaction be active when it is
called, and will throw an exception if no transaction is active.

• Never: The EJB does not support transactions and will throw an
exception if a transaction is active when it is called.

126



Best Practices for EJBs

• Use local interfaces if possible to reduce network overhead
• Use transfer objects to reduce network traffic
• Avoid excessive use of entity beans and use local session beans
instead

• Use message driven beans for asynchronous processing
• Use container managed transactions and security to simplify
development

• Use container managed persistence and avoid bean managed
persistence if possible

• Use the Java Persistence API (JPA) for persistence management
instead of entity beans in EJB 3.0 and later

• Properly design your data model and access patterns to optimize
performance

• Use performance monitoring tools to identify and fix bottlenecks in
your application

• Properly size and configure your EJB server to meet the needs of
your application.

127



Shortcomings of EJBs

• Large number of artifacts for the programmer to control
• Meta-data separated in deployment descriptor instead of code
• Home interfaces and finding of remote objects tedious
• Performance problems in the O/R mapping due to abstract schema
approach

• No rapid prototyping possible
• Entity beans overloaded with security, transactions and persistence

128



New Ways for Object-Relational Mapping

• The trend towards using generic, abstract schema mappings for O/R
mapping appears to be over, and SQL is becoming more prevalent.

• Developers have historically had difficulties with the highly abstract
entity beans used in Enterprise Java Beans (EJBs) for persistence. The
use of plain old Java objects (POJO) for persistence has been seen as
a more straightforward and effective solution.

129



Lessons Learned from EJBs

• It takes a long time to develop and scale a complex framework for
components like EJBs.

• It is important to get the interfaces right in order to achieve good
performance.

• Developers may not fully understand the implications of
abstractions.

• Frameworks can sometimes require developers to do unnecessary
code duplication.

• It is important to avoid coupling too many concerns (such as
transactions, persistence, and security) in a single framework.

• Code generation can be helpful, but it requires tooling and
customization.

• It is best to wait for “best practice patterns” to emerge before
implementing complex new technology on a large scale.

130



Services



Overview

• A recap of CORBA
• Web services
• SOA
• Microservices
• Conway’s Law
• Serverless computing

131



Timeline of Distributed Service Architectures

• In the early 1990s, distributed service architectures for use in
intranets (private networks) emerged, including Unix RPC and DCE.

• In 1998, CORBA (Common Object Request Broker Architecture) was
introduced as a distributed service architecture for use in intranets.

• In the early 2000s, the REST (Representational State Transfer)
architectural style was introduced for building web services that
could be accessed over the internet.

• In 2004, SOA (Service-Oriented Architecture) emerged as a way to
design and build web services that could be easily reused and
composed to create larger, more complex systems.

• In 2010, the Microservices design pattern became popular as a way to
build large, complex applications by composing small, independent
services that communicate with each other through APIs.

• In 2016, the concept of Serverless Computing, emerged as a way to
build and run applications and services without the need to manage
underlying infrastructure.

132



CORBA Security Model

• In the CORBA security model, the concept of secure delegation is
used to ensure that communication between systems is secure.

• When systems communicate with each other, they authenticate
themselves to ensure that they are authorized to exchange
information.

• Tokens are used to flow client information between systems, but no
secrets are shared.

• Defined routes are used to prevent token abuse and ensure that
later tiers can verify the original requestor and route of the request.

133



CORBA Core Properties

• CORBA was primarily designed as an intranet technology for use
within private networks.

• CORBA is language-independent, with a focus on defining interfaces
between systems.

• The IIOP (Internet Inter-ORB Protocol) is the base protocol used in
CORBA to ensure interoperability and handle cross-cutting concerns.

• IIOP also provides delivery guarantees for communication between
systems.

• CORBA was primarily used to connect heterogeneous (legacy)
software in large corporations.

• The standardization process for CORBA was difficult and tedious.
• The use of “boilerplate code” in CORBA often led to extensive code
generation and model-driven development.

134



Overview

• A Web Service is a software component that represents a business
function or service, and can be accessed by other applications over
public networks using standard protocols and transports (such as
SOAP over HTTP).

• Web Services use XML to create requests and responses and send
them using HTTP, allowing machines to communicate with each other
for various purposes, such as supply chain management or
business-to-business processing.

• XML-RPC, proposed by David Winer, was one of the earliest standards
for Web Services.

• Web Services have been used internally by companies for some time.

135



Web Services Core Properties

• Web Services use “simple” requests that can be sent over public
networks/the internet using HTTP transport for firewall reasons.

• XML is used as the message format for Web Services, making them
language-independent.

• Features such as reliability, security, and transactions were added to
Web Services to improve their functionality.

• Many Web Services were re-writes of CORBA interfaces using XML
syntax and expressing a business function.

• Web Services were heavily promoted as a solution for automatic
interoperability based on self-describing services and ontologies,
but this was largely overhyped.

• The technical foundation for Web Services was provided by forms of
XML-RPC, although the acronym “SOAP” (Simple Object Access
Protocol) did not actually have anything to do with distributed
objects. 136



UDDI Functionality

UDDI (Universal Description, Discovery, and Integration) is a registry that
provides a “find and publish” API for distributed services. It works like this:

1. Providers publish their services in a registry.
2. Requesters search for the desired service in the UDDI (Universal
Description, Discovery, and Integration) registry.

3. The UDDI registry retrieves the provider location and WSDL (Web
Service Description Language) service description for the requester.

4. The requester creates a request based on the WSDL description.
5. The requester sends the request to the provider using a specified
transport protocol (such as SOAP over HTTP).

This type of architecture is called “service-oriented” because it uses a
broker for service advertisement and lookup, and requester and provider
bind dynamically with respect to the transport protocol used.

137



UDDI Content and Categories

• All content in UDDI is expressed in XML.
• The UDDI registry includes information about companies and
services, as well as meta-information elements such as tModel.

• A key feature of UDDI is the expectation that requester and provider
will do a dynamic bind, agreeing on service and transport
characteristics.

The UDDI registry has three main categories of information:

• White pages: information about companies, such as location and
contact details.

• Yellow pages: business categorization and classification by type and
industry.

• Green pages: meta information about services and their qualities.

138



WSDL Overview

• WSDL (Web Service Description Language) is the metadata language
used by Web Services.

• WSDL defines how service providers and requesters understand Web
Services.

• When exposing back-end systems as Web Services, WSDL defines and
exposes the components and lists all the data types, operations,
and parameters used by the service.

• WSDL provides all the information that a client application needs to
construct a valid SOAP invocation, which is then mapped onto
back-end enterprise logic by the Web Services platform.

139



WSDL Elements

• WSDL documents define services as collections of network
endpoints or ports.

• The abstract definitions of endpoints and messages in WSDL are
separated from their concrete network deployment or data format
bindings.

• Separation of abstract and concrete definitions allows for the reuse
of abstract definitions

It includes the following elements:

• Types: A container for data type definitions using a specified type
system (such as XSD).

• Message: An abstract, typed definition of the data being
communicated.

• Operation: an abstract description of an action supported by the
service.

• Port Type: An abstract set of operations supported by one or more
endpoints.

• Binding: A concrete protocol and data format specification for a
particular port type.

• Port: A single endpoint defined as a combination of a binding and a
network address.

• Service: A collection of related endpoints.

140



SOAP

• SOAP is an RPC (Remote Procedure Call) protocol that uses XML. It
includes elements for type marshalling and RPC semantics.

• The header element in SOAP can contain meta-information, but it is
optional.

There are several aspects that define it’s performance:

• Marshaling time
• Internet transport time
• Effect of size on transport
• Demarshaling time

It has been found that internet transport time, especially in the absence
of Quality of Service (QoS) measures, has a greater impact on overall
request time than the size and interpretation effort of a textual format.

141



Security and Web Services

• SOAP, WSDL, and UDDI: Message Envelope, Interfaces Definition, and
Registry.

• WS-Security: Secure Messaging Definitions.
• WS-Trust: How to Get Security Tokens (issuing, validation, etc.).
• WS-Federation: How to Make Security Interoperable Between Trust
Domains.

• WS-Policy: How to Express Security Requirements.
• SAML: A Language to Express Security-Related Statements.
• WS-Reli: Rights Management.
• WS-Util: Helper Elements.
• WS-Authorization: Expression of Access Rights.

142



Reliable Messaging

Reliable B2B (Business-to-Business) messages require the following
qualities:

• Guaranteed delivery (acknowledgement enforced)
• Duplicate removal (using message ID)
• Message ordering (using sequence numbers)

SOAP and HTTP partially achieve this like so:

1. The first application layer exchanges persistent messages with the
requester.

2. The requester sends a SOAP message with a message ID, sequence
number, and QoS (Quality of Service) tag to the receiver.

3. The receiver must send an acknowledgement.
4. The receiver exchanges persistent messages with the second
application layer.

143



Secure Messages

• Digital signatures with XMLDsig
• Digital encryption with XMLEnc
• WS-Security moves from channel-based security to message
(object)-based security, allowing individual messages to be signed
and encrypted.

• WSDL can advertise the QoS expected/provided by a receiver.
• End-to-end security is possible across intermediaries.
• Today, federation (expressed in the WS-Federation standard) is more
important, as seen in the use of OAuth2.

• Intermediaries can add signatures or encryption to the SOAP
envelope to create a chain of trust.

• New signatures or encryption information is always prepended to
existing information.

• No encryption of the envelope, header, or body tag is allowed.
• Signatures must respect the right of intermediaries to change the
envelope or some header information.

144



SAML

• SAML allows externalization of policies and mechanisms related to
authentication, authorization, and attribute assertion.

• The access control point only needs to check assertions and does
not have to implement these mechanisms.

• SAML allows interchangeability of statements between different
services because the format of the assertions is fixed.

145



Transaction Models

Atomic transactions:

• Are not nested (standalone)
• Are short
• Involve a tightly coupled business task
• Can be rolled back in case of error
• Can be disrupted by system crashes

Activity transactions:

• Involve nested tasks
• Are long-running
• Involve a loosely coupled business activity
• Include compensating tasks and activities to address errors
• Can be disrupted by errors such as order cancellations

146



Stateful Web Services

• Stateful architectures, such as computational grids, require the
concept of a resource.

• WS-Resource is a protocol that adds resource information to web
services through metadata descriptions in the WSDL and
WS-Addressing schemas.

• An identifier is used to communicate state information between
requestors and endpoints.

• Advanced notification requests can be built on top of WS-Resource.

147



Scaling Web Services

• Avoid using XML messaging for fine-grained RPC, such as requesting
the square root of a number or a stock quote.

• Use course-grained RPC instead, with web services that “do a lot of
work, and return a lot of information”.

• Consider an asynchronous messaging model when the transport may
be slow or unreliable, or the processing is complex or long-running.

• Take the overall system performance into account and don’t assume
that XML’s “bloat” or HTTP’s limitations are a problem until they are
demonstrated in your application.

• Consider the frequency of messaging when designing your web
service. A high rate of requests may suggest that you load (replicate)
some data and processing back to the client.

• For web services that aggregate data from other web services,
consider performing the aggregation on demand or during off-hours
in one large, course-grained transaction. 148



Why UDDI Failed

UDDI relied on the following assumptions:

• Central registries of service descriptions
• Independent automatic agents searching for services
• Machines understanding service descriptions
• Machines deciding on service use
• Machines being able to use a service properly
• Machines being able to construct advanced workflows from different
services

These assumptions were problematic because:

• There is often ambiguity, undefined aspects, and incompatible terms
in service descriptions and interfaces.

• It is difficult for machines to properly use and construct advanced
workflows from different services.

To summarize, UDDI lacks technology to address the following issues:

• The meaning of data types and interfaces
• The meaning of actions
• Risk assessment
• Understanding flows and goals
• Understanding and matching of constraints

149



Lessons Learned from Web Services and CORBA

• Web services and CORBA are low-level concepts that lack semantics.
• Workflow has not been effectively addressed by web services and
CORBA.

• Service-Oriented Architecture (SOA) is not only about interfaces and
interface design, but also about hosting services.

• The availability of a service on the web is more valuable than many
specifications and interfaces.

150



SOA Core Properties

• Services offer high-level interfaces that relate to business functions.
• Service choreography (i.e. the coordination of services to achieve a
larger business process) is performed outside the individual services.

• Semantic standards and technologies (such as OWL, SAML, and the
Semantic Web) are used to enable agents to understand services
and their interfaces.

• Legacy applications can be made available to other companies
through the use of a service interface.

• SOA relies on Web Service technology as its foundation.

151



SOA Interface Design

• Object interfaces can be conversational, accept transactions, and are
fast. They use object references.

• Component interfaces use value objects, have a transaction border,
and are generally stateless. They are relatively fast.

• Service interfaces are used for long-running transactions with state
stored in a database. They include compensation functions and have
short process times but long business task execution times. Service
interfaces are isolated, independent, and can be composed with
larger services (choreography) or made up of smaller services
(orchestration). They are stateless.

152



SOA Blueprint Service Types

• Component Services: These are atomic operations on simple objects,
such as database access.

• Composite Services: These are atomic operations that use multiple
simple services (orchestration) and are stateless for the caller.

• Workflow Services: These are stateful services with defined state
changes, with the state kept in a persistent store.

• Data Services: These provide information integration through a
message-based request and response mechanism.

• Pub/Sub Services: These are event-based services with callbacks
and registration.

• Service Broker: These are intermediate services that manipulate and
forward messages based on rules.

• Compensation Services: These revert actions, but do not roll back
like traditional transactions.

153



SOA vs. Microservices

SOA:

• Services are usually larger and more transactional.
• Prefer orchestration using higher level middleware components.
• Enterprise-oriented architecture with middleware (messaging),
service layers, and ownership concepts.

• Uses metadata and messaging middleware for contract decoupling.
• Follows a “share as much as possible” approach.
• Big services are transactional.

Microservices:

• Smaller and more specialized than SOA services.
• Use eventual consistency technologies, which are not ACID.
• Prefer choreography, which can lead to highly connected and
dependent systems.

• Have a simple API gateway and teams own their infrastructure and
business services.

• Do not use contract decoupling.
• Follow a “share as little as possible” approach.

154



RPC vs. REST

• The web is based on representing resources using URIs, while web
services create private, non-standard ways of accessing information.

• The envelope paradigm used in RPC does not offer any benefits over
the generic HTTP methods (GET, PUT, POST).

• RPC mechanisms are not suitable for the web. Some extensions to
the HTTP methods might be necessary to support certain features,
such as tuple-space systems.

155



The Web’s Architecture

• Follows a client-server model, where clients request resources from
servers.

• Has a uniform interface, with resources identified using URIs and
manipulated through representations.

• Messages are self-descriptive, with metadata, headers, and other
information that allows them to be understood and processed by
clients and servers.

• Uses hypermedia as the engine of application state (HATEOAS),
meaning that responses to requests include actionable links that
allow clients to navigate the system and access related resources.

• Is a layered system, with intermediaries such as caching servers,
security systems, and load balancers playing important roles.

• Is designed to be cacheable, with responses indicating whether they
can be cached and for how long.

• Is stateless, meaning that clients need to provide context and state
information with each request.

• Allows for code-on-demand, where servers can send scripts, applets,
and other code to clients as needed.

156



REST Maturity Model

• REST Level 0 (RPC): This level resembles regular RPC, with function
calls being made to a single endpoint. Resources are not accessible
and do not have an identity.

• REST Level 1 (Resources): Function names and parameters are turned
into resources, and appointments now have an identity that can be
accessed through GET and POST requests.

• REST Level 2 (HTTP verbs): It is important to use the correct HTTP
verb (GET, POST, etc.) to indicate the intended action. GET is
idempotent and creates cachable resources. Response codes are
used to indicate the status of the request, such as the creation of a
new resource or a conflict.

• REST Level 3 (HATEOAS): Responses include encoded actions that can
be invoked by the client. Services can change their URIs without
breaking clients, and the “rel” attribute is used to describe the
semantics behind the URI link. 157



REST Resource Archetypes

• Document: Fields and links representing a base resource. Created
using POST.

• Collections: Containers maintained by the server with URI
generation. Created using POST.

• Stores: Container elements maintained by the client with “put” and
without URI generation on the server side. Inserted or updated using
PUT.

• Controllers: Procedures accessed using POST.
• URI path design: Reflects the resource model, with variable path
segments and query terms.

158



CRUD with REST

In RESTful web services, requests are made by a requestor to a
representation of a resource. The HTTP methods (GET, POST, PUT, DELETE)
are used to perform different actions on the resource:

• GET: Reads the resource and does not change the server state
(idempotent).

• POST: Creates a new resource on the server.
• PUT: Updates an existing resource on the server.
• DELETE: Deletes a resource on the server.

The separation of updates and reads is a principle of good software
design that has been around for a long time. It is known as the
“command-query separation principle” and was made a requirement in
the Eiffel programming language.

159



RESTful Web Features

RESTful web services have four key characteristics:

• Use the HTTP protocol in a CRUD-like manner, with HTTP methods
corresponding to different actions on resources.

• Are stateless, meaning that the client and server do not maintain a
persistent connection or state information between requests.

• Use meaningful URIs to represent objects and their relationships in
the form of directory entries, with relationships typically being
parent/child or general/specific entity relations.

• Use XML or JSON as a transfer format and content negotiation with
mime types.

160



Critical Points with REST

• Delivery of requests: How to handle at-least-once or at-most-once
delivery and transactions.

• Security: How to secure requests and delegate security to backend
systems (e.g. bearer tokens).

• Performance: How to optimize performance over HTTP, especially
with large amounts of data or many round-trips.

• Single responsibility: How to avoid the service becoming heavy,
kludgy, and serve more than a single responsibility over time.

161



GraphQL as a REST Alternative

• Avoids over- and under-fetching of data by allowing the client to
specify exactly what data it needs in a single request.

• Reduces the number of requests needed by allowing the client to
request all the necessary data in a single request.

• Uses a single endpoint with resolvers to handle all requests.
• Uses a uniform syntax for both data and queries, making it easy to
use and understand.

• Is typed to prevent mistakes and ensure that the correct data is
returned.

• Supports federated servers, allowing multiple servers to be
combined and accessed through a single endpoint.

• Has the potential for huge queries, which can be a danger if not
carefully managed.

162



The Reasons for Microservice Adoption

• Ultra large-scale sites require efficient horizontal scaling.
• Unicorn companies (successful startups) need to develop new
features quickly with independent teams.

• Unicorn companies need to deploy new features quickly due to
competition and the need for experimentation.

• Unicorn companies need to offer an API for network effects.

163



Scalability Problems of Monolithic Applications

• Monolithic applications can only be deployed as a whole, making it
difficult to scale specific components.

• The central database of a monolithic application can be hard to
scale.

• The API of a monolithic application can be hard to scale.
• Developers are dependent on the general release plan for the entire
application, which can be inflexible and slow.

164



Scalability Benefits of Microservices

• Individual functions can be deployed independently, making it easy
to perform A/B testing.

• Independent teams and releases are possible, allowing for more
flexibility and faster development.

• Databases are often independent due to sharding, making it easy to
scale them.

• The API can be quickly scaled to meet demand.

165



The Microservice Ecosystem

• Continuous integration/deployment allows for rapid
experimentation.

• Fully automated build and deploy processes ensure efficient
development and deployment.

• A variety of programming languages can be used.
• Continuous monitoring tools, such as ELK, help identify and
troubleshoot issues.

• Both REST APIs and RPC tools can be used to communicate between
microservices.

• Containers are preferred over virtual machines (VMs) because they
are more lightweight and efficient.

• DevOps teams are responsible for operations.
• Site-reliability engineers (SREs) oversee the performance and
reliability of the system.

• Distributed transactions are avoided.
• Federated security ensures the security of data and communication
across multiple microservices.

• Fault-tolerance patterns ensure that the system can continue to
operate even if individual microservices fail.

166



Microservice Design Patterns

• API gateway: Facade to fine-granular services
• Client-side discovery: Provided by MS chassis (e.g. spring boot)
• Server-side discovery: Services register themselves during startup,
or self registration by chassis

• Service instance per container: Scales better than VM per service
• Serverless deployment: Use of functions as a service (FaaS) to run
small pieces of code in response to specific events

• Database per service: Each microservice has its own database, with
no direct access to the databases of other microservices

• Event-driven architecture: Programming without a stack, with
changes triggered by events

• Event sourcing: Record change events in an event store
• CQRS: Separate update and idempotent read operations
• Transaction log tailing: Follow transaction log for changes
• Database triggers: Put events in events table after changes 167



Critical Points with Microservices

• Cross-concerns, such as transactions, security, performance, and
scalability, can be challenging to manage in a microservice system.
Site-reliability engineers (SREs) may be responsible for addressing
these issues.

• Virtual machines (VMs) may be too large for small services with low
throughput.

• The maintenance of many microservices can be time-consuming and
complex.

• Monitoring can be challenging due to the large number of
independent services and the difficulty in identifying correlations
between them.

• Different languages and technologies may cause confusion and
fragmentation

• There is a risk of creating new central bottlenecks, such as an event
store.

• REST may not always be the best API model and transport for
microservices.

• Distributed commits must be eventually consistent to ensure that
they do not get lost.

168



Serverless Definition

• Cloud-native platform for short-running, stateless computation and
event-driven applications

• Scales up and down instantly and automatically
• Charges for actual usage at a millisecond granularity
• Decouples computation and storage, scales and priced separately
• Pays for code execution instead of allocated resources
• Allows developers to focus on writing code, not infrastructure
management

169



Stateless Applications

• Stateless system or component does not maintain state or context
between requests

• Each request is treated as an independent action, not influenced by
previous requests

• Configuration information may be stored in classpath or persistent
storage

• Function has no memory
• Change management may be a challenge in stateless systems
• Hypercomposition (breaking a system down into smaller,
independent components) may be difficult in stateless systems

170



Issues with Serverless

• Countless small IAM rules
• Coupling with less scaleable components
• Slow cold starts
• Unclear bug handling
• Stateful functions
• Limits everywhere
• New testing concepts needed
• High costs when waiting for something
• Unpredictable latency due to the dynamic nature of the environment
• Lack of direct addressability of functions
• Limited support for common software patterns, such as batch
processing

• Difficulty debugging, tracing, and monitoring functions
• Inefficient storage systems for small objects or frequent access

171



Serverless Design Patterns

• Scalable Webhook: Triggers based on external events
• Gatekeeper: Controls access to internal resources
• Internal API: Provides an interface to internal resources
• Internal Handoff: Communicates between serverless functions
• Aggregator: Gathers and processes data from multiple sources
• Notifier: Sends notifications to external systems or users
• FIFOer: Ensures first-in, first-out processing of events
• Streamer: Processes data from a stream in real-time
• Router: Routes events to the appropriate destination
• State Machine: Executes a series of steps based on the current state
of an event

172



Theoretical Foundations of
Distributed Systems



Overview

• Basic Concepts
• Distributed Systems Fallacies
• Latency
• Correctness and Liveness
• Time, Ordering and Failures
• The Impossibility of Consensus in Async. DS (FLP)
• The CAP Theorem

• Failures, Failure Types and Failure Detectors
• Time in Distributed Systems
• Ordering and Causality
• Algorithms for Consensus in DS
• Optimistic Replication and Eventual Consistency

173



The Eight Fallacies of Distributed Computing

• The network is reliable: This fallacy assumes that the network will
always be available and free of errors or failures, which is not always
the case.

• Latency is zero: This fallacy assumes that communication between
nodes in a distributed system will be instantaneous, but in reality,
there is always some latency due to the time it takes for a request to
be processed and a response to be received.

• Bandwidth is infinite: This fallacy assumes that there is unlimited
bandwidth available for communication between nodes, but in
reality, bandwidth can be limited by factors such as network
congestion or hardware limitations.

• The network is secure: This fallacy assumes that the network is
completely secure and free from threats such as hackers or
malicious software, but this is not always the case.

• Topology doesn’t change: This fallacy assumes that the topology of
the network, or the way that nodes are connected, will remain
constant, but in reality, the topology can change due to factors such
as node failures or changes in network configuration.

• There is one administrator: This fallacy assumes that there is only
one person or entity responsible for managing the network, but in
distributed systems, there may be multiple administrators or
stakeholders with different roles and responsibilities.

• Transport cost is zero: This fallacy assumes that there are no costs
associated with communication between nodes, but in reality, there
may be costs such as network fees or hardware expenses.

• The network is homogeneous: This fallacy assumes that all nodes in
the network are identical and operate in the same way, but in reality,
nodes can have different hardware, software, and configurations.

174



Analyzing Latency

• Know the long-term trends in hardware: Latency can be influenced
by the performance of the hardware being used, so it’s important to
be aware of trends in hardware development and how they may
impact latency.

• Understand the problem of deep queuing networks and the
solutions: Deep queuing occurs when there are many requests
waiting to be processed, leading to longer latency. Understanding
this problem and implementing solutions such as load balancing can
help reduce latency.

• Know your numbers with respect to switching times, router delays,
round-trip times, IOPS per device, and perform “back of the
envelope” calculations: It’s important to have a good understanding
of the specific numbers and metrics related to latency in your
system, such as switching times and router delays, and to perform
calculations to estimate the impact of these factors on latency.

• Understand buffering effects on latency: Buffering, or the temporary
storage of data, can impact latency by adding additional processing
time. Understanding the effects of buffering on latency can help you
optimize your system to minimize this impact.

• Include the client side in your calculations: Latency is often
impacted by factors on the client side, such as the client’s hardware
and network connection. It’s important to consider these factors
when calculating latency and optimizing your system to minimize it.

175



Characteristics of Distributed Systems

• High complexity: Distributed systems involve a large number of
interacting agents, such as servers, clients, and network devices,
which can make them complex to design, build, and maintain.

• Partial knowledge: In distributed systems, each node or agent
typically has only partial knowledge about the state of the system,
the actions of other nodes, and the current time. This can make it
difficult to coordinate actions and ensure consistency across the
system.

• Uncertainty: Distributed systems are prone to uncertainty due to
factors such as node failures, network delays, and changes in the
system’s environment. This uncertainty can make it challenging to
predict the behavior of the system and ensure its reliability.

176



Liveness vs. Correctness

Correctness and liveness are two important properties of distributed
systems that ensure they function as intended and make progress.

• Correctness refers to the property that ensures that a system will not
exhibit undesirable behaviors, such as incorrect results or incorrect
behavior. It can be thought of as the absence of bad things
happening in the system.

• Liveness, on the other hand, refers to the property that ensures that
a system will eventually make progress and achieve its intended
goals. It can be thought of as the presence of good things happening
in the system.

Both correctness and liveness are based on assumptions about failures
and other conditions in the system, such as fairness and the presence of
Byzantine errors. Ensuring that a distributed system has both correctness
and liveness is critical for its success.

177



Liveness and Correctness in Practice

Here is an example of how correctness and liveness can be defined for an
event-based system:

Correctness:

• Receive notifications only if subscribed to them: This ensures that a
node only receives notifications for events it is interested in.

• Received notifications must have been published before: This
ensures that notifications are not received before they have been
published, which would lead to incorrect behavior.

• Receive a notification only at most once: This ensures that a node
does not receive the same notification multiple times, which could
lead to incorrect behavior.

Liveness:

• Start receiving notifications some time after a subscription was
made: This ensures that a node will eventually start receiving
notifications after it has subscribed to them.

Failure Assumptions: Fail-stop model with fairness

In this example, the system is designed to ensure correctness by limiting
the notifications a node receives to those it is subscribed to and ensuring
that notifications are received only once. It is designed to ensure liveness
by ensuring that a node will eventually start receiving notifications after
subscribing. The system also makes assumptions about failures, such as
the fail-stop model with fairness, which are used to ensure the
correctness and liveness of the system.

178



Timing Models

In distributed systems, timing models refer to the way that events and
communication between nodes are synchronized. There are three main
types of timing models: synchronous, asynchronous, and partial
synchronous.

• Synchronous timing models: In synchronous timing models, transmit
times are strictly defined and events happen at specific moments.
Nodes in a synchronous system can immediately detect when
another node has crashed because the system relies on a clock to
synchronize events. Examples of synchronous systems include CPUs
and other types of hardware.

• Asynchronous timing models: In asynchronous timing models, there
is no exact time between sending and receiving messages. Messages
will “eventually” arrive, but there is no guarantee about when.
Because there are no strict timing constraints, a node in an
asynchronous system cannot tell whether another node has crashed
or is simply very slow to respond. There are no timeouts in
asynchronous systems because they would require a clock.

• Partial synchronous timing models: Partial synchronous timing
models are a combination of synchronous and asynchronous
models. These systems are asynchronous, but they are enhanced
with local clocks that provide some level of synchronization. This is
the model that is typically used for real-world distributed systems,
as it allows for the flexibility of asynchronous communication while
still providing some guarantees about timing.

179



The Fischer, Lynch and Patterson Result

• The FLP (Fischer, Lynch, and Patterson) result is a theoretical result
that shows it is impossible to reach consensus in asynchronous
distributed systems in certain circumstances.

• The result has significant implications for distributed algorithms that
rely on consensus, such as leader election, agreement, replication,
locking, and atomic broadcast.

• The problem is caused by the need for a unique leader to make a
decision, but the asynchronous nature of the system can lead to
delays and the re-election of new leaders, which can indefinitely
delay the decision-making process.

• This problem affects most consensus-based distributed algorithms
and can result in non-terminating runs where no decision is reached.

180



Overview

States that in the presence of network partitions, a client must choose
either consistency or availability, but not both.

• Choosing consistency: If the client chooses consistency, they may
not get an answer at all.

• Choosing availability: If the client chooses availability, they may
receive a potentially incorrect answer.

181



Preconditions for the CAP Theorem

• To be considered consistent, the system must ensure that all
operations are atomic and linearizable, meaning that they can be
thought of as occurring at a single instant in time and have a total
order.

• For a system to be considered available, it must ensure that every
request received by a non-failing node is met with a response, and
that every request terminates.

• Partition tolerance: The network will be allowed to lose arbitrarily
many messages sent from one node to another.

182



Common Misconceptions of the CAP Theorem

• Consistency: Many systems do not achieve a total order of requests
due to the costs (latency, partial results) involved.

• Availability: Even an isolated node with a working quorum on the
other side must answer requests, breaking consistency. The node
does not know that a quorum exists.

• Partition Tolerance: You cannot un-choose partition tolerance, as it
is always present. CA systems are therefore not possible.

183



The Modern View of the CAP Theorem

• There are more failure types than just partition tolerance, such as
host-crash and client-server disconnect. These failures cannot be
completely avoided.

• Many systems do not need linearizability, and it is important to
carefully consider the type of consistency that is needed.

• Most systems prioritize latency over consistency, with availability
coming in second.

• A fully consistent system in an asynchronous network is impossible
(in the sense of FLP). FLP is much stronger than CAP.

• The architecture of the system (replication, sharding) and the
abilities of the client (failover) also have an impact on the system’s
behavior.

184



PACELC

PACELC: A more complete portrayal of the space of potential consistency
tradeoffs for distributed database systems.

• In the presence of a partition (P), the system must trade off
availability and consistency (A and C).

• In the absence of a partition (E), the system can trade off latency (L)
and consistency (C) when running normally.

185



Technical Failures

• Network failures, such as partitioning, which can occur when a
network is divided into smaller, separate networks that are unable to
communicate with each other.

• CPU/Hardware failures, such as instruction failures or RAM failures,
which can occur when the hardware components of a system
malfunction or fail.

• Operating system failures, such as crashes or reduced function,
which can occur when the operating system experiences an error or
malfunction.

• Application failures, such as crashes, stopped states, or partially
functioning states, which can occur when an application experiences
an error or malfunction.

Unfortunately, in most cases there is no failure detection service that can
identify when these failures occur and allow others to take appropriate
action. However, it is possible to develop a failure detection service that
could detect even partitioning and other types of failures through the use
of MIBs (Management Information Bases) and triangulation. Applications
could also be designed to track themselves and restart if necessary.

186



Failure Types

• Bohr-Bug:
• Shows up consistently and can be reproduced. Easy to recognize and
fix.

• Heisenbug:
• Shows up intermittently, depending on the order of execution.
• High degree of non-determinism and context dependency.
• Due to complex IT environments, they are both more frequent and
harder to solve.

• They are only symptoms of a deeper problem.
• Changes to software may make them disappear temporarily, but more
changes can cause them to reappear.

• Example: Deadlock “solving” through delays instead of resource order
management.

187



Failure Models

• Crash-stop: A process crashes atomically and stays down.
• Crash-stop with recovery: A process crashes and is down until it
begins recovery, and is up again until the next crash occurs. For
consensus, at least 2f+1 machines are needed (quorum).

• Crash-amnesia: A process crashes and restarts without recollection
of previous events or data.

• Failstop: A machine fails completely, and the failure is reported to
other machines reliably.

• Omission errors: Processes fail to send or receive messages even
though they are alive.

• Byzantine errors: Machines or parts of machines, networks, or
applications fail in unpredictable ways and may recover partially. For
consensus, at least 3f+1 machines are needed.

Many protocols for achieving consistency and availability make
assumptions about failure models. For example, transaction protocols
may assume recovery behavior by its participants if the protocol
terminates.

188



Failures and Timeouts

• Timeouts are not a reliable way to detect failures in distributed
systems because they can be caused by various factors, such as
short interruptions on the network, overload conditions, and routing
changes.

• Timeouts cannot distinguish between different types and locations
of failures.

• Timeouts cannot be used in protocols that require failstop behavior
of its participants.

• Most distributed systems only offer timeouts for applications to
notice problems, so they do not provide detailed information about
the state of participants or membership.

• Using timeouts can result in “split-brain” conditions, where a system
behaves as if it is functioning properly but is actually experiencing a
failure or malfunction.

189



Failure Detectors

A failure detector (FD) is a mechanism used in distributed systems to
detect failures of processes or machines. It is not required to be correct
all the time, but it should provide the following quality of service (QoS):

• Safety: The FD should be safe all the time, meaning it should not
falsely suspect processes of being faulty during “better” failure
periods.

• Liveness: The FD should be live during “better” failure periods,
meaning no process should block forever waiting for a message from
a dead coordinator.

• Accuracy: Eventually, some process x should not be falsely suspected
of being faulty. When x becomes the coordinator, every process
should receive x’s estimate and make a decision based on it.

• Low overhead: The FD should not cause a lot of overhead, meaning
it should not consume too many resources or slow down the system.

190



Time in Distributed Systems

In distributed systems, there is no global time that is shared across all
processes. Instead, different approaches are used to model time in these
systems. These approaches include:

• Event clock time: This is a logical model of time that represents the
order of events within a single process.

• Vector clock time: This is a logical model of time that represents the
order of events between multiple processes.

• TrueTime: This is a physical model of time that represents the
interval of time between events.

• Augmented time: This is a combination of physical and logical
models of time that takes into account both the interval of time
between events and the order of events.

Logical time is modeled as partially ordered events within a process or
between processes. It is used to represent the relative order of events in
a distributed system, rather than the actual clock time at which they
occurred.

Causal meta-data in the system can also order the events properly.

191



Consistent vs. Inconsistent Cuts

• Consistent cuts: These cuts produce causally possible events,
meaning that events occur in a logical and possible order.

• Inconsistent cuts: These cuts produce events that arrive before they
have been sent, resulting in an illogical or impossible order.

192



Event Clocks (Logical Clocks)

• Event clocks, also known as logical clocks, are systems for ordering
events within processes according to a chosen causal model and
granularity.

• Events are partially ordered based on the order in which they occur.
The time between events is a logical unit of time that has no physical
extension.

• Events delivered through messages can be used to relate the
processes and their times to the events. The external order of these
events is also a partial order of events between processes (for
example, the event “send(p1,m)” occurs before the event
“recv(p2,m)”).

• The value of the logical clock is updated to the maximum of the
current value plus one or the received value.

193



Lamport Logical Clock

• The Lamport logical clock counts events and creates an ordering
relation between them. These counters can be used as timestamps
on events.

• The ordering relation captures all causally related events, but it also
includes many unrelated (concurrent) events, which can create false
dependencies.

194



Vector Clocks

• Vector clocks are transmitted with messages and compared at the
receiving end.

• If, for all positions in two vector clocks A and B, the values in A are
larger than or the same as the values from B, we say that Vector
Clock A dominates B.

• This can be interpreted as potential causality to detect conflicts, as
missed messages to order propagation, etc.

195



Physical Interval Time (TrueTime)

• TrueTime works by using time servers to check for rogue clocks,
which are clocks that are not synchronized with the correct time.

• The error in TrueTime is typically in the range of 6 milliseconds.

196



Hybrid Clocks

Hybrid clocks are systems that combine elements of both logical and
physical models of time in order to address the limitations of each
approach. There are several reasons why hybrid clocks may be used in
distributed systems:

• In large distributed systems, such as those spanning multiple data
centers across the world, vector clocks can become too large to
maintain efficiently. Hybrid clocks can be used to reduce the size of
the clocks while still maintaining an accurate ordering of events.

• Physical interval time, such as TrueTime, requires that reads and
writes wait until the interval time is over on all machines. This can
be inefficient in some cases, and hybrid clocks can be used to allow
for more flexibility in terms of when reads and writes can occur.

197



Ordering in Distributed Event Systems

• FIFO (first-in, first-out) ordering: This refers to the requirement that a
component must receive notifications in the order in which they
were published by the publisher.

• Causal ordering: This refers to the requirement that events must be
ordered based on their causal relationships, as defined by the
system.

• Total ordering: This refers to the requirement that events must be
ordered in a specific way, such that no other component in the
system is allowed to receive an event before a preceding event has
been received. One component may be responsible for deciding the
global order of events in this case.

198



Overview

Consensus is a process used by a group of processes to reach agreement
on a specific value, based on their individual inputs. The objective of
consensus is for all processes to decide on a value v that is present in the
input set.

• Termination: Every correct process eventually decides on some value.
• Validity: If a process decides on a value v, then v was proposed by
some process.

• Integrity: No process decides on a value more than once.
• Agreement: No two correct processes decide on different values.

199



Algorithms for Consensus

These protocols offer trade-offs in terms of correctness, liveness
(availability and progress), and performance:

• Two-Phase Commit (2PC): This algorithm is used to ensure that a
group of processes all commit to the same decision. It involves two
phases: a prepare phase, in which the processes prepare to commit
to a decision, and a commit phase, in which they actually commit to
the decision.

• Static Membership Quorum: This algorithm is based on the concept
of quorum, which refers to a minimum number of processes that
must be present in order to reach a decision. The static membership
quorum algorithm is used to achieve consensus in systems with a
fixed number of processes.

• Paxos: This algorithm is used to achieve consensus in distributed
systems with a dynamic membership. It involves multiple rounds of
voting in order to reach a decision.

• Raft: This algorithm is similar to Paxos, but it is designed to be easier
to understand and implement.

• Dynamic Group Membership: This class of algorithms is used to
achieve consensus in systems with a dynamic membership. These
algorithms include virtual synchrony and multicast-based
approaches.

• Gossip Protocols: These algorithms are used to disseminate
information between processes in a distributed system. They can be
used to achieve consensus by allowing processes to exchange
information and reach agreement on a decision.

200



Two-Phase Commit (2PC)

Steps:

1. Preparation phase: In this phase, the processes prepare to commit
to a decision. Each process sends a “prepare to commit” message to
a coordinator process, which is responsible for coordinating the
decision-making process.

2. Decision phase: Once all the processes have prepared to commit, the
coordinator process sends a “commit” message to all the processes.
This message instructs the processes to commit to the decision.

3. Confirmation phase: Each process sends a “commit confirmation”
message to the coordinator process, indicating that it has
successfully committed to the decision.

4. Finalization phase: Once all the processes have confirmed that they
have committed to the decision, the coordinator process sends a
“commit complete” message to all the processes, indicating that the
decision has been successfully made.

Example:

1. Imagine that there are three processes in a distributed system: A, B,
and C.

2. The coordinator process is A.
3. The processes are deciding whether to commit to a new software
update.

4. In the preparation phase, A sends a “prepare to commit” message to
B and C.

5. B and C send “prepare to commit” messages back to A.
6. In the decision phase, A sends a “commit” message to B and C.
7. In the confirmation phase, B and C send “commit confirmation”
messages back to A.

8. In the finalization phase, A sends a “commit complete” message to B
and C, indicating that the decision to commit to the software update
has been successfully made.

Liveness and Correctness:

• The two-phase commit protocol (2PC) allows for atomic (linearizable)
updates to be made by participating processes.

• 2PC is considered relatively expensive in terms of latency due to the
requirement for a persistent log at each participant.

• A crash failure of the coordinator or a participant can halt or disrupt
the execution of 2PC.

• If everything goes as planned, 2PC has a clear and
easy-to-understand semantic for application developers.

201



Quorum-Based Consensus

Steps:

1. A decision is proposed by one of the processes in the distributed
system.

2. Each process in the system votes on the proposed decision.
3. The votes are counted and checked against the quorum requirement.
The quorum requirement is the minimum number of votes that must
be received in favor of the decision in order for it to be approved.

4. If the quorum requirement has been met, the decision is considered
to have been approved.

5. The processes move forward with implementing the decision.

Example:

1. A group of five processes in a distributed system (A, B, C, D, and E) are
deciding whether to commit to a new software update.

2. Process A proposes the decision to update the software.
3. Processes B, C, D, and E all vote on the proposed decision.
4. The votes are counted and checked against the quorum requirement,
which is set at three votes.

5. Since a quorum of three votes has been received in favor of the
decision, it is considered to have been approved.

6. The processes move forward with implementing the software update.

Liveness and Correctness:

• Quorum-based consensus protocols (QP) allow for atomic
(linearizable) updates to be made by participating processes, but
this depends on the type of implementation being used (e.g.,
whether read quoras are used).

• QP are known to be relatively expensive in terms of latency, as even
simple reads may require a quorum for consistency. To improve
performance, many QP systems use a leader-based approach, which
involves routing client requests through a designated leader process.

• Leader crashes are usually handled through the use of leases, which
can cause delays.

• In the case of a crash failure, QP can continue as long as a quorum is
still possible.

• Network partitions may cause the system to either respond with all
non-failing nodes (which may sacrifice consistency) or to stop
responding to requests from minority nodes (which may sacrifice
availability).

• QP offer a reliable and efficient method for achieving consensus in
distributed systems, but they also come with some trade-offs in
terms of performance and fault tolerance.

202



Paxos

Steps:

1. Prepare (Phase 1a):

• The Proposer (also known as the leader) selects a proposal number
N and sends a Prepare message to a quorum of Acceptors.

2. Promise (Phase 1b):

• If the proposal number N is larger than any previous proposal, the
Acceptors promise not to accept proposals less than N and send the
value they last accepted for this instance to the Proposer.

• If the proposal number is not larger, a denial is sent.

3. Accept! (Phase 2a):

• If the Proposer receives responses from a quorum of Acceptors, it
may choose a value to be agreed upon.

• If any of the Acceptors have already accepted a value, the leader
must choose a value from this set. Otherwise, the Proposer is free to
propose any value.

• The Proposer sends an Accept! message to a quorum of Acceptors
with the chosen value.

4. Accepted (Phase 2b):

• If the Acceptor receives an Accept! message for a proposal it has
promised, it accepts the value and sends an Accepted message to
the Proposer and every Learner.

Example:

• Let’s say there are 5 replicas in the Paxos system: A, B, C, D, and E.
• A client wants to update the value of a shared key-value store from
“apple” to “banana”.

1. Prepare (Phase 1a):

• The Proposer (also known as the leader) selects a proposal number
N and sends a Prepare message to a quorum of Acceptors (in this
case, a quorum is defined as 3 or more replicas).

• The message includes the proposal number N and the value
“banana” that the client wants to update the key-value store to.

• The Acceptors respond to the Prepare message with either a Promise
message or a Deny message.

2. Promise (Phase 1b):

• If an Acceptor receives a Prepare message with a proposal number N
that is higher than any previous proposal number it has seen, it
sends a Promise message to the Proposer and includes the value it
last accepted for this instance (if it has accepted a value in the past).

• If the proposal number N is not higher than any previous proposal
number, the Acceptor sends a Deny message.

3. Accept! (Phase 2a):

• If the Proposer receives Promise messages from a quorum of
Acceptors, it may choose a value to be agreed upon.

• If any of the Acceptors have already accepted a value, the Proposer
must choose a value from this set. Otherwise, the Proposer is free to
propose any value.

• The Proposer sends an Accept! message to a quorum of Acceptors
with the chosen value.

4. Accepted (Phase 2b):

• If an Acceptor receives an Accept! message for a proposal it has
promised, it accepts the value and sends an Accepted

203



Raft

RAFT is a distributed consensus protocol that allows a group of processes
(called “replicas”) to agree on a value (“decide”) in the presence of failures.
RAFT is divided into three distinct roles: Leader, Follower, and Candidate.

The protocol consists of the following steps:

1. Leader Election:

• When a replica starts up or its leader fails, it becomes a Candidate
and initiates an election by sending RequestVote messages to all
other replicas.

• If a Follower receives a RequestVote message from a Candidate with
a higher term, it responds with its vote and updates its term to
match the Candidate’s term.

• If a Candidate receives a quorum of votes (more than half of the
replicas), it becomes the Leader and sends AppendEntries messages
to all other replicas to replicate its log.

2. Log Replication:

• The Leader sends AppendEntries messages to all other replicas to
replicate its log.

• If a Follower’s log is missing an entry preceding the one in the
Leader’s message, it responds with a missing entry error.

• If the Follower’s log is up-to-date and the Leader’s entry is valid, the
Follower appends the entry and responds with a success message.

• If the Leader receives a success message from a quorum of replicas,
it updates its commit index and sends a Commit message to all
other replicas to apply the committed entry to their state machines.

3. State Machine Update::

• If a replica receives a Commit message, it applies the committed
entry to its state machine and responds with an Apply message to
the Leader.

• If the Leader receives an Apply message from a quorum of replicas,
it updates its commit index and sends an Apply message to all other
replicas.

204



Atomic Broadcast Conditions

A distributed algorithm that guarantees correct transmission of a message
from a primary process to all other processes in a network or broadcast
domain, including the primary.

It satisfies the following conditions:

• Validity: If a correct process broadcasts a message, then all correct
processes will eventually deliver it

• Uniform Agreement: If a process delivers a message, then all correct
processes eventually deliver that message

• Uniform Integrity: For any message m, every process delivers m at
most once, and only if m was previously broadcast by the sender of
m

• Uniform Total Order: If processes p and q both deliver messages m
and m0, then p delivers m before m0 if and only if q delivers m
before m0

It is widely used in distributed computing for group communication and
defined as a reliable broadcast that satisfies total order.

205



Atomic Broadcast Protocol

Data:

• Epoch (e): The duration of a specific leadership
• View (v): Defined membership set that lasts until an existing member
leaves or comes back

• Transaction counter (tc): Counts rounds of execution, such as
updates to replicas

Phases:

1. Leader election/discovery: Members decide on a new leader and
form a consistent view of the group.

2. Synchronization/recovery: Leader gathers outstanding, uncommitted
requests recorded at members and updates members missing
certain data until all share the same state.

3. Working: Leader proposes new transactions to the group, collects
confirmations, and sends out commits.

• Frequent leader changes can cause overhead and may be a potential
denial of service. It is important to consider latency on the leader
node when implementing an atomic broadcast protocol.

• Paxos, Raft etc. are Atomic Broadcast Protocols!

206



Gossip Protocols

Gossip protocols are a class of distributed algorithms that rely on
randomly chosen pairs of nodes in a network to exchange information
about the state of the system. They are typically used for group
membership, failure detection, and dissemination of information.

There are several key characteristics of gossip protocols:

• Randomized: Gossip protocols rely on randomly chosen pairs of
nodes to exchange information, which helps to reduce the risk of
overloading any particular node.

• Scalability: Gossip protocols scale well in large, distributed systems
because they only require communication with a few nodes at a time.

• Fault tolerance: Gossip protocols are designed to tolerate failures
and can continue to operate even if some nodes go down.

• Asynchronous: Gossip protocols do not rely on a central authority or
global clock, so they can operate asynchronously in a distributed
system.

207



DWAL

A DWAL (Distributed Write-Ahead-Log) is a data structure that is used to
ensure that updates to a distributed system are stored in a way that
allows them to be recovered in case of system failure. It is a type of
write-ahead log, which means that updates are written to the log before
they are applied to the system’s state. This allows the updates to be
replayed in the correct order after a system failure.

208



Design Components of DWALs

• Global visibility: Replicated state should be visible to all processes
in the system. This can be achieved through the use of atomic
broadcast or other consensus protocols to ensure that all processes
have a consistent view of the system state.

• Consensus protocol: A consensus protocol such as Paxos or Raft is
used to ensure that all processes agree on the order of updates to
the replicated state. This ensures that all processes have a
consistent view of the system state and reduces the risk of conflicts
or data loss.

• Majority decisions: In a consensus protocol-based system, majority
decisions are used to ensure that the system can make progress
even in the presence of failures. This means that a majority of
processes must agree on the order of updates to the replicated state
before they can be applied.

• Group membership: In order to ensure that the DWAL can function
properly, it is important to have a mechanism in place for
maintaining an up-to-date view of the membership of the group of
processes.

• Message order and latency hiding: To ensure that the DWAL can
function effectively, it is important to ensure that updates are
delivered to all processes in a consistent order.

209



Properties of Replication Models

• Who is responsible for updates: Single master or multiple masters?
• What is being updated: State transfer or operation transfer?
• How updates are ordered
• Conflict detection and resolution
• Method for updating replica nodes
• Guarantees for divergence

210



Single-Leader Replication

Steps:

1. Client sends x=5 to Node1 (master)
2. Master updates node 2 and node 3 (followers)
3. Client receives changed value (or old value; due to replication lag)

Advantages:

• Ordered updates
• Efficient caching
• Highly available reads

Disadvantages:

• Replicas may be out of sync with the master
• Leader crash may cause problems
• Followers may take a while to take over in case of leader failure
• Not suitable for critical resources such as primary keys

211



Eventually Consistent Reads

Eventual consistency model: Allows for a certain level of lag between
updates to be propagated to all replicas

Steps:

1. Client updates value on Master-Replica node
2. Master-Replica eventually propagates update to Slave replica
3. Client performs a stale read from client node, potentially returning
outdated value

212



Multi-Master Replication

Multi-Master Replication (MMR) is a type of replication in which multiple
servers can accept write requests, allowing any server to act as a master.
This means that updates can be made to any server, and the changes will
be replicated to all other servers in the network. MMR can be used to
improve the availability and scalability of asystem, as it allows updates to
be made to any server and allows multiple servers to handle write
requests.

It also introduces the possibility of conflicts, as multiple servers may
receive updates to the same data simultaneously. To resolve these
conflicts, MMR systems typically use conflict resolution algorithms (last
writer wins, keeping different versions, anti-entropy background
merge/resolve) or allow the user to manually resolve conflicts.

Steps:

1. Client 1 writes x=5 to Node 1 (master)
2. Client 2 writes x=10 to Node 2 (master)
3. The masters detect a conflict

Conflict types:

• Update conflict: Two identical rows changed on two servers
• Uniqueness conflict: Two identical primary (uniqe) keys added in
same table on two servers

• Delete conflict: During delete of a row the same row is changed on a
different server.

213



Leaderless Quorum Replication

Write:

• In a leader-less (quorum) replication system, the client decides how
many machines to write to or read from using the formula W+R>N,
where N is the number of machines in the replication group.

• Without a designated leader, quorum systems may suffer from long
tail effects.

• If a quorum is not available, the client can choose to write to a
“sloppy quorum” and risk the write being lost.

• Without anti-entropy, there is a high risk of partial writes in the
system, which can lead to inconsistencies and can be difficult to
clean up.

Read:

• Some systems may detect inconsistencies during a read operation.
• These systems can either automatically perform a cleanup (e.g. using
version numbers to return the correct value) or offer both values for
the client to choose from.

214



Session Modes of Asynchronous Replication

The following guarantees seem to enable “sequential consistency” for a
specific client, meaning that the program order of updates from this client
is respected by the system. Clients can track these guarantees using
vector clocks:

• “Read your writes” (RYW) ensures that the contents read from a
replica include previous writes by the same user.

• “Monotonic reads” (MR) ensures that successive reads by the same
user return increasingly up-to-date contents.

• “Writes follow reads” (WFR) ensures that a write operation is
accepted only after writes observed by previous reads by the same
user are incorporated in the same replica.

• “Monotonic writes” (MW) ensures that a write operation is accepted
only after all write operations made by the same user are
incorporated in the same replica.

We can also derive session anomalies from this:

• Non-monotonic reads: Reads that do not return increasingly
up-to-date contents.

• Non-monotonic writes: Write operations that are not accepted in the
order that they were made by the same user.

• Non-monotonic transactions: Transactions that do not preserve the
order in which they were made by the same user.

• Not-reading-my-writes: Reads that do not include previous writes by
the same user.

215



Global Modes of Replication

There are multiple different modes to choose from:

• Strong consistency ensures that all previous writes are visible, and is
characterized by the following properties:

• Ordered: Writes are accepted in the order that they were made.
• Real: All writes are visible.
• Monotonic: Write operations are accepted only after all previous write
operations made by the same user are incorporated in the same
replica.

• Complete: All writes are included.

• Consistent prefix ensures that an ordered sequence of writes is
visible, and is characterized by the following properties:

• Ordered: Writes are accepted in the order that they were made.
• Real: All writes are visible.
• X latest missing: Some of the latest writes may be missing.
• Snapshot isolation-like: The system behaves like snapshot isolation,
where writes made by a transaction are not visible to other
transactions until the transaction is committed.

• Bounded staleness ensures that all writes older than X or every
write except the last Y are visible, and is characterized by the
following properties:

• Ordered: Writes are accepted in the order that they were made.
• Real: All writes are visible.
• X latest missing: Some of the latest writes may be missing.
• Monotonic increasing due to bound: Write operations are accepted
only after all previous write operations made by the same user are
incorporated in the same replica, but the bound on staleness allows
for some deviation from strict monotonicity.

• Eventual consistency ensures that a subset of previous writes is
visible, and is characterized by the following properties:

• Unordered: Writes may not be accepted in the order that they were
made.

• Un-real: Some writes may not be visible.
• Incomplete: Some writes may be missing.

Each of them have their own trade-offs:

• Strong consistency:
• Consistency: Excellent
• Performance: Poor
• Availability: Poor

• Eventual consistency:
• Consistency: Poor
• Performance: Excellent
• Availability: Excellent

• Consistent prefix:
• Consistency: Okay
• Performance: Good
• Availability: Excellent

• Bounded stalenes:
• Consistency: Good
• Performance: Okay
• Availability: Poor

• Monotonic reads:
• Consistency: Okay
• Performance: Good
• Availability: Good

• Read my writes:
• Consistency: Okay
• Performance: Okay
• Availability: Okay

216



Distributed Services and Algorithms I



Overview

1. Distributed Services
1.1 Replication, Availability and Fault-Tolerance
1.2 Global Server Load Balancing for PoPs

2. Typical Cluster Services
2.1 Fail-over and Load-Balancing
2.2 Directory Services
2.3 Cluster Scheduler (neu)

3. Distributed Operating Systems
4. Example Services and Algorithms

4.1 Distributed File System with replication and map/reduce
4.2 Distributed (streaming) Log
4.3 Distributed Cache with consistent hashing
4.4 Distributed DB with sharding/partitioning functions
4.5 Distributed Messaging with event notification and gossip

217



What is a Distributed Service?

Function provided by a distributed middleware with:

• High scalability
• High availabilit

218



Services and Instances

• Distributed systems:
• Comprised of services, such as applications, databases, caches, etc.
• Services are made up of instances or nodes, which are individually
addressable hosts (physical or virtual)

• Key observation:
• Unit of interaction is at the service level, not the instance level
• Concerned with logical groups of nodes, not specific instances
• Example: Interacting with a database server, rather than a specific
database instance.

219



Core Distributed Services

• Finding Things
• Name Service
• Registry
• Search

• Storing Things
• Various databases
• Data grids
• Block storage, etc.

• Events Handling and asynchronous processing: Queues
• Load Balancing and Failover
• Caching Service
• Locking Things and preventing concurrent access: Lock service
• Request scheduling and control: Request multiplexing
• Time handling
• Providing atomic transactions: Consistency and persistence
• Replicating Things: NoSQL DBs
• Object handling: Lifecycle services for creation, destruction,
relationship service, etc.

220



Availability

Is defined as:

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑈𝑝𝑡𝑖𝑚𝑒𝑎𝑔𝑟𝑒𝑒𝑑 𝑢𝑝𝑜𝑛−𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒𝑝𝑙𝑎𝑛𝑛𝑒𝑑 𝑎𝑛𝑑 𝑢𝑛𝑝𝑙𝑎𝑛𝑛𝑒𝑑
𝑈𝑝𝑡𝑖𝑚𝑒𝑎𝑔𝑟𝑒𝑒𝑑 𝑢𝑝𝑜𝑛

Continuous availability does not allow for planned downtime.

221



Typical Hardware Causes for Downtime

• Overheating
• PDU failure
• Rack-move
• Network rewiring
• Rack failures
• Racks go wonky
• Network maintenances
• Router reloads
• Router failures
• Individual machine failures
• Hard drive failures

222



Availability through Redundancy

Across groups of resources:

• Multi-site data center
• Disaster recovery
• Scalability

Within a group of resources:

• High availability (HA)
• Clustering
• Centralized administration (CA)
• Automatic failover (CO)
• Scalability
• Data replication
• Quorum algorithms (require multiple machines)

Between two resources:

• High availability (HA)
• Centralized administration (CA)
• Automatic failover (CO)
• Load distribution to prevent overload in case of failure

For an individual resource:

• Single point of failure (SPOF)
• Easy updates
• Maintenance problems
• Simple reliability
• Limited vertical scalability

223



3 Copy Disaster Recover Solution

• Maintains 3 copies of data/resources with at least 2 in different
locations

• Enables quick switchover in case of disaster for business continuity
• Provides high availability and protects against data loss.

224



Serial vs. Redundant Availability

• Serial chain of components:
• Availability decreases with more members in the chain
• Individual components need higher availability

• Redundant, parallel components:
• Unavailability of each component is multiplied and subtracted from 1
to determine overall availability

• Only one component needs to be up to maintain availability.

225



Global Server Load Balancing

• DNS Round Robin:
• Simple load balancing technique that distributes traffic to multiple
servers based on the client’s DNS query

• Little mitigation in case of problems like overload, failure, etc.
• Clients may disregard TTL settings
• Takes approximately 15 minutes to drain traffic from troubled servers.

• BGP Anycast:
• Uses BGP routing to direct clients to the nearest available server
• BGP does not consider link latency, throughput, packet loss, etc. in
selecting the best route

• With multiple routes to the destination, BGP simply selects the one
with the least number of hops

• Troubleshooting can be demanding.

• Geo-DNS:
• Uses the client’s geographical location to determine the closest
server for traffic distribution

• Relies on the accuracy of the DNS provider’s IP and location
guesswork

• TTL setting may not accurately reflect the time-to-live of cached
information.

• Real User Measurements (RUM):
• Uses real-time data from end-user devices to dynamically adjust
traffic distribution for optimal performance.

226



Failover with Virtual IPs

Failover with one virtual IP:

• DNS points only to one Virtual IP (VIP)
• In case of a server failure, client sessions are lost but they can
establish a new session on reconnect

• No changes in DNS are required, avoiding the potential issues of
flushes and timeouts

Multi-site failover:

• A combination of geo-aware DNS and a Load Balancer/Fail-over
front-server

• Requests can be re-routed to different locations in case of a server
failure

• May still have the limitations and issues associated with geo-aware
DNS.

227



Failover, Load Balancing and Session State

• Sticky Sessions: Keeps session state on a single server, offers
advantages with a non-replicated system of records but limited in
terms of fail-over and load-balancing options.

• Session Storage in DB: Session state is stored in a database, offers
better scalability and fail-over options compared to sticky sessions.

• Session Storage in Distributed Cache: Session state is stored in a
distributed cache, provides better performance and scalability
compared to database storage, but still with fail-over options.

Today: Stateless servers with state in DB are the norm, but sticky sessions
are still useful because records need to be replicated.

Compromise: Replicate sessions between pairs of servers, then enable
switching between them as failovers

228



P2P Load Balancing

• Evaluator Functions: Access server stats in shared memory and
determine the outcome of a request, whether it is handled by its
own server, redirected, or proxied.

• Server Stats: Various metrics such as CPU usage, number of requests,
memory usage, etc., are replicated in shared memory and used by
evaluator functions to make load-balancing decisions.

• Server Stat Replication: The replication of server stats is done
through multicast.

229



Requirements of Distributed Name/Directory Systems

Functional Requirements:

• Re-bind/resolve methods to store name/value pairs
• Query Interface
• Name Aliases for multiple logical hierarchies (DAG-structured name
space)

• Composite Names (path names)
• Location Independence by separating address and location of
objects

• Sound security system to ensure access to objects based on names.

Non-Functional Requirements:

Definition: Non-Functional Requirements are necessary functions of a
system that ensure speed, reliability, availability, security, etc. Many
systems fulfill functional requirements but fail to meet non-functional
requirements.

• Persistent Name/Value Combinations (retain mapping in case of a
crash)

• Transacted Manipulation (all-or-nothing handling during application
installation)

• Federated Naming Services to combine different naming zones
• Fault tolerance through replication for availability
• Fast lookup through clustering, with slower writes and client-side
caching support to reduce communication costs

230



Design of Distributed Name/Directory Systems

Name Space:

• The company name space organization is a design and architecture
concern.

• System Management enforces rules, policies, and controls changes.
• Different machines host parts of the name space (zones).

Naming Service:

• Interfaces (naming service, factoryfinder, factory, account) allow
administrators to hide versions/implementations from clients.

• Finders in a remote environment support object migration and
copying.

231



Examples of Naming Services

• Domain Name System (DNS)
• X.500 Directory
• Lightweight Directory Access Protocol (LDAP)
• CORBA Naming Service
• Java Registry
• J2EE JNDI (mapped to CORBA Naming Service)

232



Google vs. Amazon

Amazon:
Services

• Storage Services:
• S3 (huge storage capacity)
• RDS
• Aurora
• Mongo

• Computation Services: EC2 (Virtual Machines)
• Queuing Services
• Load-balancing services
• Elastic map reduce
• Cloudfront (fast cache)
• Lambda
• Stepfunctions
• AI framework services

Google:
Products

• Scheduling Service
• Map/Reduce Execution Environment
• F1 NewSQL DB
• Spanner Replicated DB
• BigTable NoSQL Storage
• Distributed File System
• Chubby Lock Service
• Graph Processing and SQL:

• Pregel
• Percolator
• Dremel

• Dapper (distributed locking)
• Google Compute Platform

233



Best Practices for Designing Services

• Keep services independent
• Measure services
• Define SLAs and QoS for services
• Allow agile development of services
• Allow hundreds of services, aggregate them on special servers
• Avoid middleware and frameworks that force patterns
• Keep teams small and organized around services
• Manage dependencies carefully
• Create APIs for customer access to services

234



CQRS (Command Query Responsibility Segregation)

• Separates the responsibilities of reading data (queries) and
modifying data (commands) into separate objects or services.

• Improves scalability and performance by allowing reads and writes
to be optimized separately.

• Promotes event-driven architecture by allowing commands to trigger
domain events.

• Simplifies domain modeling by reducing the complexity of
aggregates.

• Increases consistency by using separate models for reads and writes.
• Reduces the coupling between the read and write sides of the
system.

235



Requirements of Caching Services

• Scalable with ability to add machines
• Avoid “thundering herds” due to placement changes
• Supports replication of cache entries
• High performance required
• Optional disk backup support
• Supports various storage mediums, from RAM to SSD
• Supports different cache replacement policies with caution.

236



Handling Changing Machine Counts in Caching Services

• Problem: Changing Machine Count
• Solution: Consistent Hashing (Ring)
• Machines are mapped into a ring and their position determines the
key-space they are responsible for.

• Machines can be assigned multiple virtual positions.

237



Consistent Hashing Algorithms

Simple Consistent Hashing Algorithm:

• URLs and caches are mapped to points on a circle using a standard
hash function.

• URL assigned to closest cache in clockwise direction.
• Adding a new cache only reassigns the closest URLs to it, items don’t
move between existing caches.

Dynamo Consistent Hashing Algorithm:

• Separates placement and partitioning.
• Uses virtual nodes assigned to real machines for more flexibility.
• Virtual node is responsible for multiple real nodes.
• Improved load balancing due to additional indirection.

238



Cache Patterns

Pull:

• Occurs during request time
• Concurrent misses and client crashes can result in outdated caches
• Complicated handling of concurrent misses and updates
• Can be slow and dangerous for backends

Push:

• Automated push updates cached values
• Should only be used for values that are always needed

Pre-warmed:

• The system loads the cache before the application starts serving
clients

• Used for big applications with pull caches to avoid boot issues

General consideration: Be aware of LRU or clocked invalidations as cache
is mission critical.

239



Cache Design Considerations

• Kinds of information fragments
• Lifecycle of fragments
• Validity of fragments
• Effects of fragment invalidation
• Dependencies between fragments, pages, etc.

240



Local vs. Distributed Events

Local:

• Observer updates sent on one thread
• If observer doesn’t return, mechanism stops
• If observer calls back to observed during update call, deadlock can
occur

• Solution doesn’t scale and is not reliable (e.g. observer crashes
result in lost registrations)

• Does not work for remote communication

Distributed:

• Various combinations of push and pull models possible
• Receivers can install filters using a constraint language to filter
content (reduces unwanted notifications)

241



Asynchronous Event-Processing

• Publisher and subscriber communicate through interaction
middleware

• Used to decouple components and asynchronous sub-requests from
synchronous main requests (so that multiple fast tasks can run
parallel to a slow main task)

• Implemented as Message-Oriented-Middleware (MOM) or
socket-based communication library

• Can be implemented in broker-less or brokered mode.

242



Features of Event-Driven Interaction

• Basic Event: Any entity can send and receive events without
restrictions or filtering.

• Subscription: A receiver can subscribe to specific events, making
event delivery more efficient.

• Advertisement: The sender informs receivers about possible events,
reducing the need for broadcasting.

• Content-Based Filtering: The sender, middleware, or receiver can
apply filtering based on event content.

• Scoping: Administrative components can manipulate event routes,
enabling invisible communication between components.

243



Types of Message Oriented Middleware (MOMs)

Centralized Message-Oriented-Middleware:

• Collects all notifications and subscriptions in one central place,
enabling easy event matching and filtering

• Has a high degree of control and no security/reliability issues on
clients

• Can create scalability and single-point-of-failure problems

Clustered Message-Oriented-Middleware:

• Provides scalability at higher communication costs
• Has lots of routing/filter-tables at cluster nodes, making filtering and
routing of notifications expensive

Simple P2P Event Libraries:

• Local libraries are aware of each other, but components are
de-coupled

• Broker-less architecture is faster than brokered ones
• Does not provide at-most-once semantics or protection against
message loss

• Guarantees atomicity and possibly FIFO
• Examples include ZeroMQ, Aaron, and Nanomsg

Flooding Protocols:

• Notifications travel towards subscriptions, which are only kept at
leaf brokers

• Advantages include that subscriptions become effective quickly, and
notifications are guaranteed to arrive everywhere

• Price is many unnecessary notifications to leaf nodes without
subscribers

244



ZeroMQ

• Brokerless socket library for messaging, with message filtering
• Connection patterns include pipeline, pub/sub, and multi-worker
• Various transports, including in process, across local process, across
machines, and multicast groups

• Message-passing process model without the need for
synchronization

• Multi-platform and multi-language support
• “Suicidal snail” fail-fast mechanism to kill slow subscribers

245



Horizontal vs. Vertical Sharding

Horizontal: Per (database) row, e.g. first 100 users are in shard 1, 200 in
shard 2 etc.

Vertical: Per (database) column, e.g. profile and email is in shard 1, photos
and messages in shard 2 etc.

246



Sharding Strategies

• Allow adding heterogenous hardware in the future
• Sharding should not make app code unstable
• Sharding should be transparent to the app
• Sharding and placement strategies should be separate

247



Horizontal Sharding Functions

Algorithms applied to the key (often: user ID) to create different groups
(shards):

• Numerical range: users 0-100000, 100001-200000, etc.
• Time range: 1970-80, 81-90, 91-2000, etc.
• Hash and modulo calculation
• Directory-based mapping using a meta-data table for arbitrary
mapping from key to shard

248



Consequences of Sharding

• No more SQL JOINs, leading to lots of copied data
• Increased need for partial requests for data aggregation
• Expensive distributed transactions required for consistency (if
needed)

• Vertical sharding distributes related data types from one user, while
horizontal sharding distributes related users from each other (bad
for social graph processing)

• SQL limitations due to mostly key/value queries and problems with
automatic DB-Sequences

• Every change requires corresponding application changes

249



Overview

• Within the database, referential integrity rules protect containment
relationships

• No equivalent in object space
• No protection in distributed systems

For example when an employee leaves:

• All rights are cancelled
• Disc-space is archived and erased
• Databases for authentication and application-specific DBs are
updated

• Badge no longer works
• All equipment has been returned

250



Functional Requirements of Relationship Services

• Definition of relations between objects without modifying those
objects

• Support for different types of relations
• Ability to create graphs of relations
• Ability to traverse relationship graphs
• Support for reference and containment relations

251



Why Relationship Services Failed

The good:

• Powerful modeling tool
• Helps with creation, migration, copy, and deletion of composite
objects

• Maintains referential integrity

The bad:

• Tends to create many small server objects
• Performance impact
• Not supported by many CORBA vendors for a long time
• EJB only supported with local objects in the same container.

252



Distributed Services and Algorithms
II



Overview

• Classic (ACID) distributed consistency includes:
• Distributed 2P locking
• Distributed 2PC consensus

• ACID 2.0 eventual (coordination-free) consistency includes:
• CAP and its children, CALM, CRDTs, etc.
• Distributed replication (e.g. Cassandra)
• CALM (Bloom) consistency
• CRDTs (Conflict-free Replicated Data Types)

• Distributed Coordination (e.g. Chubby, ZooKeeper) includes:
• Distributed consensus protocols
• Cluster scheduler (e.g. Borg)

253



Why Truth is Expensive

• Strong consistency is discouraged.
• Coordination and distributed transactions slow down the process
and affect availability.

• The cost of knowing the truth is high for many applications.
• The truth might only be a partial or outdated version.
• Availability is prioritized over consistency by making local decisions
with available information.

• Improves the user experience by making this trade-off, most of the
time.

254



Aspects of Classic Distributed Consistency

• Distributed Objects and Persistence: Objects that span across
multiple systems and persist data in multiple locations.

• ACID: Atomicity, Consistency, Isolation, Durability - a set of properties
that guarantee that database transactions are processed reliably.

• Transactions: A sequence of database operations that are executed
as a single unit of work.

• Isolation Levels: The level of isolation between concurrent
transactions, specifying how one transaction affects another.

• Two-Phase Locking: A protocol for enforcing serializable access to
shared resources in a distributed system.

• Distributed Transactions: Transactions that span multiple systems
and persist data in multiple locations.

• Two-Phase Commit (2PC): A protocol for ensuring that a transaction
is committed in a consistent state in a distributed system.

• Failure Models for 2PC: Models for how 2PC protocol handles system
failures and ensures the consistency of transactions.

255



Persistent Object Representations

• Real storage object lives in a data store and uses data store
concepts for storage (e.g. a row in a table).

• Service works with object representations (“Incarnations”) and
provides the illusion of a persistent object to clients.

• Java Connector Architecture provides an adapter interface for
resource managers.

256



Mechanisms for Persistence

SQL Driver:

• Used to store object state.
• Suffers from “impedance mismatch”.
• Needs to control locking etc. in the service.

Object Relational Mapper (EJB/Hibernate):

• Used to store object state transparently for the programmer.
• Inheritance creates difficult problems for table mapping: Either
performance or flexibility suffer.
Just storing an object is simple - doing this in a way that pro-
tects from concurrent access, system failures, and across differ-
ent data stores is much harder.

257



Persistent Object Mapping

• Enterprise integration software specializes in this kind of mapping
• Key to persistent mapping is meta-information:

• Generates object representations for a service.
• Generates code necessary for the data store to store the objects with
its own mechanisms and objects.

258



Data Store Session Pooling

• Number of channels to a data store is limited
• If an object directly allocates a session (channel) and does not
return it quickly, system throughput would become marginal

• Session creation is expensive (security!)
• Clients can either ask a pool for a session or the container
framework can automatically allocate and return sessions

• Problems:
• Timeouts
• Connection recycling

259



Locking Against Concurrent Access

Binary locks:

• Used to synchronize an object, causing all clients except one to be
blocked.

• Limitations: Binary locks are simple to use, but their performance
suffers as they cannot distinguish between reads and writes.

Modal locks (read/write locks):

• Used to allow clients who only want to read to obtain read locks.
Many concurrent read locks are possible.

• Advantages: Modal locks allow for a more nuanced approach to
concurrent access, improving performance by allowing multiple read
operations to occur simultaneously.

Lock Granularity: The granularity of locks (the scope of the resources
being protected by the lock) affects the overall throughput of a system.
The smaller the lock granularity, the better the performance will be.

260



Optimistic Locking

Process:

1. Lock a row, read it along with its timestamp, and then release the
lock.

2. Start a transaction
3. Write the data to the database.
4. Acquire locks for all data read and compare the data timestamps.
5. If one of them is newer, the transaction operation is rolled back,
otherwise it is commited.

Advantages:

• Better overall throughput as locks are held for only a short period of
time

• Timestamp comparison logic is implemented as a framework
mechanism in the client session objects, simplifying the process

261



Serializability with Two-Phase Locking

Process:

1. Allocate all locks
2. Manipulate the data
3. Release all locks

Advantages: Requires that all locks be allocated before any data
manipulation and released only after the manipulation is complete.
Guarantees serializability.

262



Deadlocks

• State where two or more processes are blocked because each one is
waiting for resources held by the other

• Results in a situation where the processes cannot continue to run
and are stuck in a permanent waiting state

• Can occur in concurrent systems where multiple processes access
shared resources

263



Distributed Deadlock Detection

Local wait-for-graphs:

• Correctness: Based on the definition of a wait-for-graph, this method
correctly detects deadlocks by identifying cycles in the graph.

• Liveness: This method can only detect deadlocks that exist within a
single process or machine, so it may miss deadlocks in a distributed
system.

• Cost/complexity: The cost of implementing this method is relatively
low, as it only requires tracking locks and resource requests within a
single process.

• Failure model: This method is susceptible to false negatives (missed
deadlocks) in a distributed system.

• Architecture type: This method is suitable for systems with a
centralized architecture, where all locks and resource requests can
be monitored by a single process.

Detection servers:

• Correctness: Detection servers are designed to detect deadlocks in a
distributed system, so this method should provide correct results if
implemented correctly.

• Liveness: This method is designed to detect deadlocks in a
distributed system, so it should have better liveness compared to
local wait-for-graphs.

• Cost/complexity: The cost of implementing this method is higher
than local wait-for-graphs, as it requires communication and
coordination between multiple processes.

• Failure model: This method is susceptible to false negatives if one or
more detection servers fail, or if there are errors in the
communication between the servers.

• Architecture type: This method is suitable for systems with a
decentralized architecture, where multiple processes are involved in
the detection of deadlocks.

Distributed edge chasing algorithms:

• Correctness: This method is designed to detect deadlocks in a
distributed system, so it should provide correct results if
implemented correctly.

• Liveness: This method is designed to detect deadlocks in a
distributed system, so it should have better liveness compared to
local wait-for-graphs.

• Cost/complexity: The cost of implementing this method is higher
than local wait-for-graphs, as it requires communication and
coordination between multiple processes.

• Failure model: This method is susceptible to false negatives if there
are errors in the communication between the processes.

• Architecture type: This method is suitable for systems with a
decentralized architecture, where multiple processes are involved in
the detection of deadlocks.

Stochastic detection:

• Correctness: The accuracy of this method depends on the
parameters used, so it may provide incorrect results in some cases.

• Liveness: This method is designed to detect deadlocks in a
distributed system, so it should have better liveness compared to
local wait-for-graphs.

• Cost/complexity: The cost of implementing this method is relatively
low, as it only requires monitoring resource requests and using
randomization to make decisions.

• Failure model: This method may miss deadlocks if the randomization
parameters are not set correctly.

• Architecture type: This method is suitable for systems with a
decentralized architecture, where multiple processes are involved in
the detection of deadlocks.

264



Classic ACID Definitions

• Durability: Ensures that once a transaction is committed, its effects
persist even in the case of system failures (e.g. a crash that causes
you to lose changes made to a word file)

• Atomicity: Ensures that a transaction is treated as a single,
indivisible unit of work that either happens in its entirety or doesn’t
happen at all (e.g. in the case of a birthday party re-schedule where
not all participants were caught in time)

• Isolation: Ensures that the concurrent execution of transactions
results in a system state that would be obtained as if transactions
were executed serially (e.g. if two people work on a shared file, their
changes should not interfere with each other)

• Consistency: Ensures that the system remains in a valid state after a
transaction is executed (e.g. after you complete a friend’s work for
the day, the tasks remain consistent, and the system remains in a
valid state) 265



Transaction Properties and Mechanisms

• Atomic Changes over Distributed Resources: This is achieved
through the use of consensus or voting algorithms such as
two-phase commit.

• Consistency: This is maintained by observing consistency constraints
between objects, such that the system remains in a valid state
before and after a transaction is executed.

• Isolation from Concurrent Access: This is accomplished through the
use of locking mechanisms, such as two-phase locking or
hierarchical locking.

• Durability of Changes: This is ensured by transferring changes made
to memory objects to persistent storage, to prevent loss in case of a
system failure.

266



Serializability and Isolation

Definition: States that the outcome of executing a set of transactions
should be equivalent to some serial execution of those transactions.

Purpose: The purpose of serializability is to ensure that each transaction
operates on the database as if it were running by itself, which maintains
the consistency and correctness of the database.

Importance: Without serializability, ACID consistency is generally not
guaranteed, making it a crucial component in maintaining the integrity of
the database.

267



Transaction API

1. System starts in a consistent state
2. Begins transaction
3. Modifies objects

Commit transaction:

• System has a new, consistent state
• Local objects are now invalid
• Changes are visible to others

On error: Rollback:

• Either from system or from client
• Only successful commit operations become the new state durable
and visible to others

• Means going back to the beginning completely
• Client does not even know that they tried an operation
• Log files would have to be cleaned.

268



Components of Distributed Transactions

Process

• Begin()
• Commit()
• Rollback()

RPCs:

• Register (transactional servers)
• Vote (objects)
• Commit/rollback (objects, resource managers)
• Read/write/prepare (resource managers)

Components:

• Transaction
• Transactional client
• Transactional servers (objects)
• TACoordinator
• XA resource managers

269



Service Context

• Some services require context information to flow with a call
• Security: Needs to flow user information, access rights, etc.
• Transactions: Needs to flow information about ongoing transactions
to participants

• The additional information needs to be standardized to allow
different vendor implementations of services to interoperate.

270



Distributed Two-Phase Commit

Vote:

• To achieve atomic operations in a distributed setting, the
TA-Coordinator asks all participants for their vote on committing or
rolling back.

• Upon receiving a commit() call from a client, objects part of the TA
vote by asking resource managers (e.g. databases) to prepare for the
commit.

• A successful return of “prepare” from resource managers means that
both the object and the resource manager have promised to commit
the changes if the coordinator sends a commit.

Completion:

• The coordinator is the only entity that can commit or abort a TA after
the prepare phase.

• If the vote phase was successful and all participants have prepared
for a commit, the coordinator calls for a commit.

• In case of an error (e.g. unreachable participant), the coordinator
calls for a rollback.

271



Failure Models of Distributed Transactions

Work Phase:

• If a participant crashes or becomes unavailable, the coordinator
calls for a rollback.

• If the client crashes before calling commit, the coordinator will
timeout the TA and call for a rollback.

Voting Phase:

• If a resource becomes unavailable or has other issues, the
coordinator calls for a rollback.

Commit Phase (Server Uncertainty):

• In case of a crashed server, it will consult the coordinator after
restart and ask for the decision (commit or rollback).

272



Special Problems of Distributed Transactions

Resources:

• Participants in distributed TA’s consume many system resources due
to logging all actions to temporary persistent storage.

• Large parts of the system may become locked during a TA.

Coordinator as a Single Point of Failure:

• The coordinator must also prepare for a crash and log all actions to
temporary persistent storage.

Heuristic Outcomes for Transactions:

• In certain circumstances, the outcome of a transaction may only be
determined heuristically if the real outcome cannot be determined.

273



Transaction Types

Flat Transactions:

• Characterized by all-or-nothing behavior.
• Any failure causes complete rollback to original state.
• Can result in loss of significant amount of work if many objects have
been handled.

Nested Transactions:

• Allow partial rollbacks with a parent transaction.
• Child TA rollback doesn’t affect parent TA, but parent TA rollback
returns all participants to initial state.

• Example: Allocation of a travel plan (hotel, flight, rental-car, trips,
etc.).

Long-running Transactions:

• Challenge is resource allocation and increasing amount of work lost
in case of rollback.

• Syncpoints move the fallback position closer to the commit point.

Compensating Transactions:

• Improves transaction throughput by making objects visible sooner, at
the cost of sacrificing the ISOLATION property.

• Require compensation for previous TA which can no longer be rolled
back.

• Depend on the application whether compensating transactions are
possible.

• Can be hand-coded if no transaction monitor/manager is available.

274



ANSI Transaction Levels

Problems:

• Dirty reads: Occurs when a transaction reads data written by another
concurrent transaction that has not yet been committed.

• Non-repeatable reads: Occurs when a transaction re-reads data it
has previously read and finds that the data has been modified by
another transaction that has since committed.

• Phantom reads: Occurs when a transaction re-executes a query
returning a set of rows that satisfies a search condition and finds
that the set of rows satisfying the condition has changed due to
another recently-committed transaction.

Transaction Levels:

• Read Uncommitted:
• Prevents: Nothing

• Read Committed:
• Prevents:

• Dirty reads.

• Repeatable Read:
• Prevents:

• Dirty reads
• Non-repeatable reads

• Serializable:
• Prevents:

• Dirty reads
• Non-repeatable reads
• Phantom reads

The higher the level, the more overhead is required.

275



Filesystem Block Order Guarantees

• BOB (Block Order Breaker) is a tool used to evaluate the behavior of
modern file systems in regards to building crash consistent
applications.

• It tests the order guarantees of blocks in file systems.

276



Eventually Consistent Storage Systems

• Consistency without Coordination: The design of modern data
management systems has been impacted by the rise of
Internet-scale geo-replicated services.

• Weak Alternatives: To reduce the cost of expensive coordination,
many systems have sought weaker alternatives that still ensure
application integrity.

• Cost of Coordination: Classic mechanisms like serializable
transactions come with associated availability, latency, and
throughput penalties.

• When to Forego Coordination: The question of when it’s safe to
forego the cost of expensive coordination versus when it’s necessary
to pay the price is an important one.

277



Grid Storage vs. NAS/SAN

Grid Storage:

• Requires POSIX-Grid gateway
• Special caching may be needed for video (readahead)
• Offers huge bandwidth and scalability
• May require special maintenance
• May be proprietary
• Supports parallel processing
• Requires special applications
• Compatibility with existing apps is questionable
• Disaster recovery across sites is unclear
• Requires more electric power and space

NAS/SAN:

• POSIX-compatible
• Special caching is difficult to implement
• Has a hard limit in SPxx storage interface
• Offers simple upgrades
• Supports standard file system
• Allows dynamic growth of file systems via LUN organization
• Requires maintenance effort to balance space/use
• Proven and fast technology
• Expensive disaster recovery through smaller replicas
• Several different file system configurations are possible
• Without virtual SAN, hot-spots can occur on a single drive
• Longer drive-rebuild times

To summarize:

• Watch out for proprietary lock-in and compatibility issues with grid
storage

• Grid storage requires programming skills for solutions (map/reduce
with Hadoop)

• NAS/SAN is a proven and faster technology
• NAS/SAN won’t be replaced by grid storage (which is specialized)

278



Forces behind NoSQL

• Need for low-latency and high-throughput access to data
• Difficulty in managing and maintaining consistency in a distributed
system

• Increased focus on scalability and flexibility
• Changing data requirements and needs for real-time processing
• Cost and complexity of traditional RDBMs in large-scale systems
• Inability of RDBMs to handle large amounts of unstructured data
• The need for horizontal scaling in storage
• Lack of support for real-time, complex data processing using RDBMs
• The need for automatic scaling in storage to keep up with rapidly
growing data

• Relaxed data consistency requirements in some applications.

279



Scaling Problems of RDBMs

• Poor time complexity of SQL joins: 𝑂(𝑚 + 𝑛) or worse
• Difficulty in horizontally scaling, resulting in loss of joins or jumping
between nodes

• Unbounded nature of queries, which can lead to a single query
overloading a database

• Optimized for storage efficiency (no duplicates), integrity, and
flexibility of access through arbitrary joins.

280



NoSQL Design Patterns

• Use partition keys with many distinct values for better scalability
and data distribution.

• Opt for a single table design with hierarchical modeling and
de-normalization to simplify the data structure.

• Ensure that values are evenly requested to avoid hot spots.
• Utilize composite secondary keys for 1:n and n:n queries.
• Limit query responses with paging token for better performance.
• Consider the use case and access patterns before finalizing the data
layout.

• Avoid relational modeling and instead focus on simplifying the data
structure.

• Data integrity is an application concern and should be handled by
the application logic.

• Data storage efficiency is not a primary concern.
281



DynamoDB Design Principles

• Decentralized design with no single point of failure (no master node)
• Supports heterogeneous hardware
• Symmetric peers for better scalability
• Incrementally scalable to handle increasing load
• Eventually consistent data replication
• Requires a trusted environment for data security
• Replication support for higher data availability. Always-write enabled
with conflict resolution during read

• Multi-version store with conflict resolution policies for better data
management

282



Overview

• Order-insensitive processing using CALM (Consistency as Logical
Monotonicity) principles in EC (Eventual Consistency) programs

• Converging replicated data types (CRDTs) divided into two types:
• State-based CRDTs
• Operation-based CRDTs

283



CALM Principle

• “Consistency as Logical Monotonicity”
• Links consistency with logical monotonicity, where monotonic
programs ensure eventual consistency regardless of the order of
delivery and computation.

• Monotonic programs do not require coordination, unlike
non-monotonic programs where adding an element to the input set
can revoke a previously valid output.

• Non-monotonic programs require coordination schemes that wait
until inputs are complete before proceeding.

284



CALM Operations

Logically Monotonic:

• Initializing variables
• Accumulating set members
• Testing a threshold condition

Non-monotonic:

• Overwriting variables
• Set deletion
• Resetting counter
• Negation

285



CRDTs

State-based CRDTs:

• Calculate the new result at one node and then propagate it to
replicas.

• The data structure must be commutative, associative, and
idempotent, e.g., sets.

Operation-based CRDTs:

• Send the requested operation to each replica and calculate the
results locally.

• The operations must be commutative with “exactly once” semantics
(idempotent) and in FIFO order.

• These delivery guarantees are difficult to achieve, making
state-based CRDTs more popular currently.

286



Bending the Problem

• Separates data store and application-level consistency concerns.
• CALM, ACID 2.0, and CRDT appeal to higher-level consistency criteria
in the form of application-level invariants.

• Instead of requiring strong consistency for every read and write, the
application only needs to ensure semantic guarantees (e.g., “the
counter is strictly increasing”).

• This grants more flexibility in how reads and writes are processed.

287



Examples of CRDTs

Counters:

• Grow-only counter: Merge operation is max(values), payload is a
single integer

• Positive-negative counter: Consists of two grow counters, one for
increments and another for decrements

Registers:

• Last Write Wins register: Uses timestamps or version numbers, merge
operation is max(ts), payload is a blob

• Multi-valued register: Uses vector clocks, merge operation takes
both values

Sets:

• Grow-only set: Merge operation is union(items), payload is a set, no
removal is allowed

• Two-phase set: Consists of two sets, one for adding and another for
removing, elements can be added once and removed once

• Unique set: Optimized version of the two-phase set
• Last write wins set: Merge operation is max(ts), payload is a set
• Positive-negative set: Consists of one PN-counter per set item
• Observed-remove set

288



Distributed Coordination

Features:

• Configuration changes and notifications
• Updates for failed machines
• Dynamic integration and deconfiguration of new machines
• Elastic configuration with partial failures
• API for watches, callbacks, automatic file removal, and triggers
• Simple data model (directory tree model)
• High performance and highly available in-memory cluster solution
• No locks for updates, but total ordering of requests for all cluster
replicas

• All replicas answer reads
• Wait-free implementation of coordination service with client API
performing locks, leader selection, etc

Liveness and Correctness:

• Sequential Consistency: Updates from a client will be applied in the
order they were sent.

• Atomicity: Updates either succeed or fail. No partial results.
• Single System Image: A client will see the same view of the service
regardless of the server it connects to.

• Reliability: Once an update has been applied, it will persist from that
time forward until a client overwrites the update.

• Timeliness: The client’s view of the system is guaranteed to be
up-to-date within a certain time bound.

289



Zookeeper API

• create: Creates a node at a specified location in the tree
• delete: Deletes a node from the tree
• exists: Tests if a node exists at a specified location in the tree
• get data: Retrieves the data stored at a node
• set data: Writes data to a node
• get children: Retrieves a list of children of a node
• sync: Waits for data changes to be propagated to all nodes in the
cluster.

290



Primary-Order Atomic Broadcast with Zab

• Primary sends non-commutative, incremental state changes to
backup units

• Order of incremental changes maintained even in case of primary
crash

• Multiple outstanding requests possible
• Identification scheme to prevent re-ordering of updates
• Synchronization phase to ensure old updates delivered before new
ones stored.

291



Consistency Requirements for ABCast (Reliable Ordered Atomic Broadcast)

• Validity: If a correct process broadcasts a message, all correct
processes will eventually deliver it.

• Uniform Agreement: If a process delivers a message, all correct
processes will eventually deliver it.

• Uniform Integrity: Every process delivers a message at most once,
only if it was previously broadcast by sender.

• Uniform Total Order: If processes p and q both deliver messages m
and m0, their order must be the same.

292



Primary Order

• Local primary order: If primary broadcasts (v, z) before (v’, z’), process
that delivers (v, z) must have delivered (v’, z’) before (v, z).

• Global primary order: If Pi broadcasts (v, z) and Pj > Pi broadcasts (v’,
z’), process delivering both (v, z) and (v’, z’) must deliver (v, z) first.

• Primary integrity: If Pe broadcasts (v, z) and some process delivers (v’,
z’) broadcast by Pe’ < Pe, Pe must have delivered (v’, z’) before
broadcasting (v, z).

293



HA Transactions

• Provide transactional guarantees without unavailability during
system partitions or high network latency (Non-failing replica must
respond)

• Not CAP: Can’t provide linearizability as reading the most recent
write from a replica

• Not HAT-compliant: Serializability, Snapshot Isolation, Repeatable
Read Isolation

• Possible with algorithms relying on multi-versioning and client-side
caching: Read Committed Isolation, transactional atomicity, etc.

• Causal consistency with phantom prevention and ANSI Repeatable
Read need affinity with at least one server (sticky sessions)

• Unable to prevent concurrent updates to shared data items, cannot
provide recency guarantees for reads.

294



Design of Distributed Systems



Overview

• Key principles for system design
• Utilizing caching and replication for efficient operations
• Importance of architecture in optimizing performance
• Validation of architectural design
• Techniques for improving performance in large fan-out architecture
• Strategies for achieving fault-tolerance in high-scale systems.

295



Overview

• Consideration of Latency: Examination of buffering and round-trip
times

• Importance of Locality: Proper placement of heavily interacting
components

• Avoiding Duplication of Work: Utilizing resources effectively
• Resource Pooling: Reusing resources in communication such as
connections or thread pools

• Parallelization: Design for concurrent operations and minimize
serialization

• Evaluating Consistency: Determining the appropriate level of
consistency with caching and replication

• Caching and Replication Strategies: Utilizing prediction and
bandwidth to reduce latency

• End-to-end Argument: Minimizing heavy guarantees at lower levels
of the system.
Know Your No. 1 Enemy: Latency!

296



Sharing Ressources and Data

• Pooling resources can improve performance even in local systems
• High-frequency requests can lead to memory allocation issues and
poor performance

• Caching is crucial for the effectiveness of distributed applications
• Minimizing backend requests while maintaining sane application
logic

• Breaking down information into smaller fragments can reveal
reusable parts

297



Connection Pooling

• Matching server and database CPU capabilities
• Avoiding blocking and app threads holding onto connections
• Careful monitoring of wait time in the pool
• Checking I/O rates with new hardware
• Understanding what constitutes a “connection” to storage
• Monitoring core/thread ratio, etc.

298



Horizonal Scaling/Parallelization

• Horizontal scaling through parallel processing
• Every request can be handled by any thread on any host
• Avoid synchronization points in servlet engines or database
connections.

299



Caching and Replication

• Caching components are responsible for maintaining data validity
• Data source is responsible for keeping replicas consistent and
up-to-date

• Focus on reducing back-end requests for improved efficiency.

300



End-to-End Argument

• User/Developer: Compensation for behavior through application
• Application Layer: Use of special commands, such as “Select for
Update” or “Begin Transaction”

• Intermediate Layer: Compiler/Languages utilizing technologies such
as Software Transactional Memory and memory models

• Base Layer: Considerations for CPU cache coherence, database
isolation levels, and real-time streaming, etc.

301



Design Methodology

• Back-of-the-envelope calculations
• Decide on geographical distribution and replication strategy
• Determine data segregation, including single or multi-tenancy
models and partitioning

• Divide business requirements into REST-like services
• Define SLAs for services, including availability, latency, throughput,
consistency, and durability

• Define security context with IAAA (Identity, Authentication,
Authorization, Audit) and perform risk analysis

• Complete monitoring and logging setup
• Plan for deployment, release changes, testing, and maintenance
using fault-tolerant features.

302



Uncomfortable Real-World Questions

• How many application servers are needed to support the customer
base?

• What is the optimal ratio of users to web servers?
• What is the maximum number of users per server?
• What is the maximum number of transactions per server?
• Which specific hardware configurations provide the best
performance?

• What is the current production server capability?
• What do the users do? (These are business process definitions.)
• How fast do the users do it? What are the transaction rates of each
business process?

• When do they do it? What time of day are most users using it?
• What major geographic locations are they doing it from?
• How many connections can the server handle?
• How many open file descriptors or handles is the server configured
to handle?

• How many processes or threads is the server configured to handle?
• Does it release and renew threads and connections correctly?
• How large is the server’s listen queue?
• What is the server’s “page push” capacity?
• What type of caching is done?

303



Overview

• Information Architecture
• Distribution Architecture
• System Architecture
• Physical Architecture
• Architectural Validation

304



Information Architecture (to analyze Caching)

Defines pieces of information to aggregate or integrate

Data/changed
by Time Personalization

Country
Codes

No (not often, reference
data)

No

News Yes (aging only) No, but personal
selections

Greeting No Yes
Message Yes (slowly aging) Yes

305



Distribution Architcture
Tells portal how to map/locate fragments defined in the informa-
tion

Data
Type SourceProtocolPort

Avg.
Resp.

Worst
Resp. Downtimes

Max
Conn. Loadbal.SecurityContact/SLA

News hostXhttp/xml3000100ms 6
sec.

17.00-
17.20

100 client plain Mrs.X/News-
SLA

ResearchhostYRMI 80 50ms 500ms 0.00-
1.00

50 server SSL Mr.Y/res-
SLA

Additional factors to consider:

• Available bandwidth
• Number of planned requests
• Distance to the device
• Availability numbers

Example results:

• Back-end server performance affecting home page construction time
• Huge latencies and variations in response times causing instabilities
in the portal application

• Getting to the servers for every request is nearly impossible due to
huge latencies and variations in response times from dependencies.

306



Service Access Layer

Is determined by the distribution architecture.

• Handle changes in the interface
• Monitors backend system connections
• Disable connections that are not functioning properly (“fail fast”)
• Add new sources to the system
• Poll and re-enable sources that have been temporarily disabled
• Keep track of statistics on all sources.

Simple Alternative: Sidecar, contains circuit breaker & service discovery

Advanced Alternative: Service mesh with separate data and control plane

307



Physical and Process Architecture

Physical Architecture:

• Deals with reliability issues (replication, high-availability, etc.) and
scalability (horizontal and/or vertical)

• Need to define scalability methods from the beginning due to their
impact on overall system architecture

Horizontally scalable application:

• Replicated on multiple hosts
• Avoids single point of failure

Vertically scalable application:

• Can only install more CPUs or RAM on single instance of host
• Limited scalability and availability (HA application)

308



Architecture Validation

In the architecture validation phase these questions are answered: How
does the architecture …

• Handle security and privacy?
• Handle data consistency and durability?
• Handle disaster recovery and business continuity?
• Handle performance, scalability and capacity?
• Handle integration with other systems and data sources?
• Handle upgrades, maintenance and support?
• Align with the organization’s goals, strategies and plans?

309



Problems with Naive Application Designs

The portal had no caching etc.

• GUI architecture: Long time with empty page
• System architecture: No System Architecture Diagram!
• Performance: Very slow construction of home-page
• Reliability: Frequent stalls and crashes of the application
• Throughput: 10 users max. with top-notch hardware!
• Team: Little understanding of performance or architecture

310



Improving the GUI Architecture

• Minimize HTTP requests by combining files and using sprites
• Use asynchronous loading for non-critical resources
• Avoid heavy use of animations and dynamic effects
• Preload essential resources
• Use a content delivery network (CDN) for static resources
• Lazy load images and videos
• Use browser caching effectively
• Minimize the use of plugins and third-party scripts.
• Minimize the number of DOM manipulations
• Use lazy loading for images and other resources
• Avoid using large, blocking scripts
• Use a content delivery network (CDN) to distribute resources
• Consider using server-side rendering or progressive web apps (PWA)
• Implement caching strategies at the server and client side
• Monitor and optimize the page load time regularly
• Use performance optimization tools and browser dev-tools to
identify bottlenecks.

311



Improving the System Architecture

Use a system architecture diagram:

• Show the main components and their interactions
• Indicate the flow of data and processing
• Highlight the main functionalities and relationships between
components

• Reflect the overall structure and design of the system
• Provide a clear and concise representation of the system
architecture.

312



Lessons Learned from Naive Portal Designs

• Request time is affected by the sum of individual calls
• Each delay in a call contributes to the runtime
• Back-end server problems lead to poor request time
• Long timeout settings negatively impact response times
• Small improvements in sub-requests matter with many concurrent
requests

• Lack of central architecture diagram limits understanding of
performance impact and throughput

• JEE restrictions prevent creating custom threads.

313



Overview

Calls are parallel instead of serial.

• The overall request time is determined by the slowest sub-request
• Each delay in an individual call adds to the runtime
• Long timeout settings negatively impact response times
• Using short timeouts for back-end server calls is recommended
• Running short requests in separate threads may not be productive,
consider request bundling

• Error from one sub-call should not block the whole request, have a
fallback

• Avoid all threads getting stuck on a dysfunctional sub-call
(bulkhead)

• Temporarily close dead connections (circuit-breaker).

314



Reliability Issues in Dependencies

• System load becomes worse due to hanging requests occupying
resources and leading to heavy garbage collection

• Dead servers can cause a buildup of threads due to even short
timeouts

• The portal was frequently impacted by failing back-end servers
• Avoid lengthy waiting time for sub-requests in the homepage action
handler: Adopt the “Fail-fast” pattern today.

315



Fragments

Pages: Unique to customers, cannot be re-used

Page fragments:

• Can be shared and heavily re-used
• Allows huge reduction in back-end requests
• Downside: If fragments change, mechanism needed to invalidate
dependent pages.

316



Latency Reduction & Tolerance

• Keep response times tight but aware of stragglers
• Fight stragglers with backup requests and cross-server cancellation
• Watch for overload at sender when responses come back
• Do NOT distribute load evenly, synchronize background load across
machines instead

• Reduce head-of-line blocking (partition large requests)
• Partition data across machines
• Cheat by coming back with partial data
• Cross request adaptation
• Increase replication count
• Beware of the incast problem

317



Avoiding Getting Stuck

• Fail Fast: Don’t wait for problematic resources
• Timeouts: Use timeouts when accessing a service
• Exponentially Decreasing Retries: Use if needed
• Fallback: Use alternatives when service doesn’t work, such as serving
stale data

• Caching: Retrieve data from cache if real-time dependency is
unavailable, even if data is stale

• Eventual Consistency: Queue writes to be persisted once
dependency is available

• Stubbed Data: Revert to default values if personalized options can’t
be retrieved

• Empty Response (Fail Silent): Return null or empty list that UIs can
ignore.

318



Circuit Breakers

• Purpose: Handle faults that might take a long time to recover from
• Provide control mechanism to prevent application from continually
trying to perform a failing operation

• Allows application to fail fast and respond to failures quickly
• Acts as a switch that “trips” when system detects a failure
• Stops application from making further attempts to perform
operation until reset

• Helps prevent application from becoming unresponsive
• Protects other parts of the system from being affected by the failure.

319



Bulkheads

• Bulkhead pattern is a design for fault-tolerant applications
• Elements of an application are isolated into pools
• If one pool fails, others will continue to function
• Named after the sectioned partitions (bulkheads) of a ship’s hull
• Example: semaphores and thread pools

320



Blast Reduction

• Partition app into geographical regions (e.g. US, DACH etc.)
• Splitting regions further into specific availability zones and further
cells

• Shuffle sharding: Provide a single-tenant-like isolation for shared
workloads

• Splitting app itself into separate control and data planes

321


	Meta
	Contributing
	License
	Course Timeline

	Introduction to Distributed Systems
	Overview
	Reasons for Distributing Systems
	Why are Distributed Systems complicated?
	Characteristics of Distributed Systems
	Middleware

	Theoretical Models of Distributed Systems
	Overview
	Basic Principles
	Queuing Theory
	Client/Server Architectures
	Process and I/O Models

	Message Protocols
	Overview
	Delivery Guarantees
	Idempotency
	Order
	Sockets

	Remote Procedure Calls
	Overview
	Types of RPCs
	Implementing Remote Calls

	Distributed Objects
	Overview
	Basic Principles
	Components of Distributed Objects
	Implementing Remote Objects
	Java RMI

	Distributed Business Components
	Overview
	Basic Principles
	Enterprise Java Beans

	Services
	Overview
	Timeline of Distributed Service Architectures
	CORBA
	Web Services
	SOA
	REST
	Microservices
	Critical Points with Microservices
	Serverless

	Theoretical Foundations of Distributed Systems
	Overview
	Foundational Concepts
	Consistency
	The CAP Theorem
	Failure
	Clocks
	Consensus
	Broadcasting
	Replication

	Distributed Services and Algorithms I
	Overview
	Types of Distributed Services
	Availability
	Load Balancing
	Service Organization
	Caching
	Events
	Sharding
	Relationships

	Distributed Services and Algorithms II
	Overview
	Problems with Classic Concurrency
	Locking
	Transactions
	Distributed Filesystems
	NoSQL
	Beyond Relaxed Consistency
	Distributed Coordination Services

	Design of Distributed Systems
	Overview
	Design Principles for Distributed Systems
	Architecture Fields
	Improving an Existing Design
	Fan-Out Architecture
	Containing Failures


