
Uni Programming Languages Notes

Felicitas Pojtinger (fp036)

2022‑10‑24

Uni Programming Languages Notes 2022‑10‑24

Contents

1 Introduction 2
1.1 Contributing . 2
1.2 License . 2

2 Overview 3
2.1 General Design . 3
2.2 Implementation Details . 3
2.3 Users . 3
2.4 Timeline . 4

3 Syntax 4
3.1 Logic . 4
3.2 Loops . 6
3.3 Arrays . 8
3.4 Hashes . 10
3.5 Ranges . 11
3.6 Functions . 12
3.7 Classes . 14
3.8 Files, Modules and Mixins . 18
3.9 Metaprogramming . 19

4 Usecases for Ruby 21

5 Practical Examples 22
5.1 dRuby . 22
5.2 Sinatra . 23

6 Questions 24

Felicitas Pojtinger (fp036) 1

Uni Programming Languages Notes 2022‑10‑24

1 Introduction

1.1 Contributing

These studymaterials are heavily based on professor Ihler’s “Aktuelle Programmiersprachen” lecture
at HdM Stuttgart.

Found an error or have a suggestion? Please open an issue on GitHub (github.com/pojntfx/uni‑
programminglanguages‑notes):

Figure 1: QR code to source repository

If you like the study materials, a GitHub star is always appreciated :)

1.2 License

Figure 2: AGPL‑3.0 license badge

Uni Programming Languages Notes (c) 2022 Felicitas Pojtinger and contributors

SPDX‑License‑Identifier: AGPL‑3.0

Felicitas Pojtinger (fp036) 2

https://www.hdm-stuttgart.de/studierende/abteilungen/sprachenzentrum/kursangebot/kursangebot/block?sgname=Medieninformatik+%28Bachelor%2C+7+Semester%29&sgblockID=2573358&blockname=Aktuelle+Programmiersprachen&sgang=550033
https://www.hdm-stuttgart.de/studierende/abteilungen/sprachenzentrum/kursangebot/kursangebot/block?sgname=Medieninformatik+%28Bachelor%2C+7+Semester%29&sgblockID=2573358&blockname=Aktuelle+Programmiersprachen&sgang=550033
https://github.com/pojntfx/uni-programminglanguages-notes
https://github.com/pojntfx/uni-programminglanguages-notes

Uni Programming Languages Notes 2022‑10‑24

2 Overview

2.1 General Design

• “A dynamic, open source programming language with a focus on simplicity and productivity. It
has an elegant syntax that is natural to read and easy to write.”

• Inspired by Perl, Smalltalk, Eiffel, Ada, Lips
• Multi‑paradigm from the beginning: Functional, imperative and object‑oriented
• Radical object orientation: Everything is an object, there are no primitive types like in Java (5.
times { print "We *love* Ruby -- it's outrageous!"})

• Very flexible, i.e. operators can be redefined
• Built‑in blocks (closures) from the start, excellent mapreduce capabilities
• Prefers mixins over inheritance
• Syntax uses limited punctuationwith some notable exceptions (instance variables with @, glob‑
als with $ etc.)

2.2 Implementation Details

• Exception handling similar to Java & Python, but no checked exceptions
• Garbage collection without reference counts
• Simple C/C++ extension interface
• OS independent threading & Fibers, even if OS is single‑threaded (like MS‑DOS)
• Cross‑platform: Linux, macOS, Windows, FreeBSD etc.
• Many implementation (MRI/CRuby, JRuby for Ruby in the JVM, TruffleRuby on GraalVM, mruby
for embedded uses, Artichoke for WebAssembly and Rust)

2.3 Users

• Twitter
• Mastodon
• GitHub
• Airbnb
• Shopify
• Twitch
• Stripe
• Etsy
• Soundcloud

Felicitas Pojtinger (fp036) 3

Uni Programming Languages Notes 2022‑10‑24

• Basecamp
• Kickstarter

2.4 Timeline

• First concepts and prototypes ~1993
• First release ~1995, becamemost popular language in Japan by 2000
• Subsequent evolution and growth outside Japan
• Ruby 3.0 released ~2020, introducing a type system for static analysis, fibers (similar to Gor‑
outines, asyncio etc.), and completing optimizations making it ~3x faster than Ruby 2.0 (from
2013)

3 Syntax

3.1 Logic

Typical logical operators:

1 >> 2 < 3
2 => true

1 >> 1 == 2
2 => false

Comparisons are type checked:

1 >> 1 == "1"
2 => false

Trip equals can be used to check if if an instance belongs to a class:

1 >> String === "abc"
2 => true

If, else, etc work as expected:

1 if name == "Zigor"
2 puts "#{name} is intelligent"
3 end

However Ruby also allows interesting variations of this, such as putting the comparions behind the
block to execute:

Felicitas Pojtinger (fp036) 4

Uni Programming Languages Notes 2022‑10‑24

1 puts "#{name} is genius" if name == "Zigor"

We can also use unless, which is a more natural way to check for negated expressions:

1 p "You are a minor" unless age >= 18

switch statements are known as case statements, but don’t fallthrough by default like in
Java:

1 case a
2 when 1
3 spell = "one"
4 when 2
5 spell = "two"
6 when 3
7 spell = "three"
8 when 4
9 spell = "four"

10 when 5
11 spell = "five"
12 else
13 spell = nil
14 end

Since everything is an object, we can also use case statements to check if instances are of a class:

1 a = "Zigor"
2 case a
3 when String
4 puts "Its a string"
5 when Fixnum
6 puts "Its a number"
7 end

Asmentioned before, Ruby is a very flexible language. The case statement for example also allows to
us to check regular expressions:

1 case string
2 when /Ruby/
3 puts "string contains Ruby"
4 else
5 puts "string does not contain Ruby"
6 end

We can even use Lambdas in case statements, making long if ... else blocks unnecessary:

1 case num
2 when -> (n) { n % 2 == 0 }
3 puts "#{num} is even"

Felicitas Pojtinger (fp036) 5

Uni Programming Languages Notes 2022‑10‑24

4 else
5 puts "#{num} is odd"
6 end

And the object orientation becomes very clear; we can even define our ownmatcher classes:

1 class Zigor
2 def self.===(string)
3 string.downcase == "zigor"
4 end
5 end
6
7 name = "Zigor"
8
9 case name

10 when Zigor
11 puts "Nice to meet you Zigor!!!"
12 else
13 puts "Who are you?"
14 end

We can also assign values from a case statement:

1 grade = case mark
2 when 80..100 : 'A'
3 when 60..79 : 'B'
4 when 40..59 : 'C'
5 when 0..39 : 'D'
6 else "Unable to determine grade. Try again."
7 end

3.2 Loops

Ruby has the for loop that we are all used to, but also more specialized constructs that allow for
more expressive usecases:

1 for i in 0..10
2 p i
3 end

For example upto and downtomethods:

1 10.downto 1 do |num|
2 p num
3 end

1 17.upto 23 do |i|
2 print "#{i}, "

Felicitas Pojtinger (fp036) 6

Uni Programming Languages Notes 2022‑10‑24

3 end

Or the timesmethod, which is muchmore readable:

1 7.times do
2 puts "I know something"
3 end

while, until and the infinite loop loops still exist however:

1 i=1
2 while i <= 10 do
3 print "#{i}, "
4 i+=1
5 end

1 i=1
2 until i > 10 do
3 print "#{i}, "
4 i+=1
5 end

1 loop do
2 puts "I Love Ruby"
3 end

We can also use break, next and redowithin a loop’s block:

1 1.upto 10 do |i|
2 break if i == 6
3 print "#{i}, "
4 end

1 10.times do |num|
2 next if num == 6
3 puts num
4 end

1 5.times do |num|
2 puts "num = #{num}"
3 puts "Do you want to redo? (y/n): "
4 option = gets.chop
5 redo if option == 'y'
6 end

Felicitas Pojtinger (fp036) 7

Uni Programming Languages Notes 2022‑10‑24

3.3 Arrays

Arrays in Ruby can contain multiple types and work as expected; there is no array vs collection di‑
vide:

1 my_array = ["Something", 123, Time.now]

Instead of loops you can use the eachmethod to iterate:

1 my_array.each do |element|
2 puts element
3 end

We can use << to add things to an array:

1 >> countries << "India"
2 => ["India"]
3 >> countries
4 => ["India"]
5 >> countries.size
6 => 1
7 >> countries.count
8 => 1

And access elements with [0]:

1 >> countries[0]
2 => "India"

Thanks to the .. syntax we can also access multiple elements at once in a very simple way:

1 >> countries[4..9]
2 => ["China", "Niger", "Uganda", "Ireland"]

And use the includes?method (note the ?!) to check if elements are present:

1 >> countries.include? "Somalia"
2 => true

And delete to delete elements:

1 >> countries.delete "USA"
2 => "USA"

If we have a nested array, using dig fill allow us to find deeply nested elements in a simple way:

1 >> array = [1, 5, [7, 9, 11, ["Treasure"], "Sigma"]]
2 => [1, 5, [7, 9, 11, ["Treasure"], "Sigma"]]
3 >> array.dig(2, 3, 0)
4 => "Treasure"

Felicitas Pojtinger (fp036) 8

Uni Programming Languages Notes 2022‑10‑24

Another very useful set of features are set operations, allowing us tomodify arrays in a simpleway, for
example we can use the & operator to find elements that are in two arrays:

1 >> volleyball = ["Ashok", "Chavan", "Karthik", "Jesus", "Budha"]
2 => ["Ashok", "Chavan", "Karthik", "Jesus", "Budha"]
3 >> cricket = ["Budha", "Karthik", "Ragu", "Ram"]
4 => ["Budha", "Karthik", "Ragu", "Ram"]
5 >> volleyball & cricket
6 => ["Karthik", "Budha"]

Or + to merge them:

1 >> volleyball + cricket
2 => ["Ashok", "Chavan", "Karthik", "Jesus", "Budha", "Budha", "Karthik",

"Ragu", "Ram"]

Or use | to merge both, but de‑duplicating at the same time:

1 >> volleyball | cricket
2 => ["Ashok", "Chavan", "Karthik", "Jesus", "Budha", "Ragu", "Ram"]

Finally, we can also use - to removemultiple elements at once:

1 >> volleyball - cricket
2 => ["Ashok", "Chavan", "Jesus"]

For those who are familiar with MapReduce, Ruby provides all of it in the language. For example map
:

1 >> array = [1, 2, 3]
2 => [1, 2, 3]
3 >> array.map{ |element| element * element }
4 => [1, 4, 9]

Note that this doesn’t modify the array; we can use map! for that, which works for lots of Rubymeth‑
ods:

1 >> array.collect!{ |element| element * element }
2 => [1, 4, 9]
3 >> array
4 => [1, 4, 9]

The filtermethod for example can be used in the same way (named keep_if, with the opposite
delete_if also existing), and works like how you already know if from JS:

1 >> array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2 => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
3 >> array.keep_if{ |element| element % 2 == 0}
4 => [2, 4, 6, 8, 10]

Felicitas Pojtinger (fp036) 9

Uni Programming Languages Notes 2022‑10‑24

3.4 Hashes

Hashes can be used to store mapped information:

1 mark = {}
2 mark['English'] = 50
3 mark['Math'] = 70
4 mark['Science'] = 75

And we can define a default value:

1 mark = {}
2 mark.default = 0
3 mark['English'] = 50
4 mark['Math'] = 70
5 mark['Science'] = 75

The hash literal {} also allows us to create hashes with pre‑filled information:

1 marks = { 'English' => 50, 'Math' => 70, 'Science' => 75 }

To loop over hashes, we can use the eachmethod again:

1 total = 0
2 mark.each { |key,value|
3 total += value
4 }
5 puts "Total marks = "+total.to_s

Avery interesting feature touse in combinationwithhashes are symbols; theyaremuchmoreefficient
than strings as they are global and thus use less memory:

1 mark = {}
2 mark[:English] = 50
3 mark[:Math] = 70
4 mark[:Science] = 75

We can check this by getting their object_id (a kind of pointer):

1 c = "able was i ere i saw elba"
2 d = "able was i ere i saw elba"
3 >> c.object_id
4 => 21472860
5 >> .object_id
6 => 1441620

1 e = :some_symbol
2 f = :some_symbol
3 >> e.object_id
4 => 1097628

Felicitas Pojtinger (fp036) 10

Uni Programming Languages Notes 2022‑10‑24

5 >> f.object_id
6 => 1097628

Just like accessing hash values is similar for arrays and hashes, we can use the sameMapReduce func‑
tions on hashes:

1 >> hash = {a: 1, b: 2, c: 3}
2 => {:a=>1, :b=>2, :c=>3}
3 >> hash.transform_values{ |value| value * value }
4 => {:a=>1, :b=>4, :c=>9}

3.5 Ranges

Ranges are a cool concept in Ruby that we’ve used before. We can use themwith the .. notation:

1 >> (1..5).each {|a| print "#{a}, " }
2 => 1, 2, 3, 4, 5, => 1..5

We can also use them on strings:

1 >> ("bad".."bag").each {|a| print "#{a}, " }
2 => bad, bae, baf, bag, => "bad".."bag"

They can be very useful in case statements, where you can replace lots of or operators with them:

1 grade = case mark
2 when 80..100
3 'A'
4 when 60..79
5 'B'
6 when 40..59
7 'C'
8 when 0..39
9 'D'

10 else
11 "Unable to determine grade. Try again."
12 end

In addition to using them in case statements as described before, they can also serve as condi‑
tions:

1 print "Enter any letter: "
2 letter = gets.chop
3
4 puts "You have entered a lower case letter" if ('a'..'z') === letter
5 puts "You have entered a upper case letter" if ('A'..'Z') === letter

We can also use triple dots, which will remove the last value:

Felicitas Pojtinger (fp036) 11

Uni Programming Languages Notes 2022‑10‑24

1 >> (1..5).to_a
2 => [1, 2, 3, 4, 5]
3 >> (1...5).to_a
4 => [1, 2, 3, 4]

It is also possible to define endless ranges:

1 print "Enter your age: "
2 age = gets.to_i
3
4 case age
5 when 0..18
6 puts "You are a kid"
7 when (19..)
8 puts "You are grown up"
9 end

3.6 Functions

As mentioned before, Ruby draws a lot of inspiration from functional programming languages, and
functions are a primary building block in the language as a result.

We can define functions with def and call themwithout parentheses:

1 def print_line
2 puts '_' * 20
3 end
4
5 print_line

It is also possible to define default arguments unlike in Java:

1 def print_line length = 20
2 puts '_'*length
3 end
4
5 print_line
6 print_line 40

Arguments are always passed by reference:

1 def array_changer array
2 array << 6
3 end
4
5 some_array = [1, 2, 3, 4, 5]
6 p some_array
7 array_changer some_array

Felicitas Pojtinger (fp036) 12

Uni Programming Languages Notes 2022‑10‑24

8 p some_array
9

10 => [1, 2, 3, 4, 5]
11 => [1, 2, 3, 4, 5, 6]

There is no need for a return statements as returns are implicit (but optional for control flow sup‑
port):

1 def addition x, y
2 x + y
3 end
4
5 addition 3, 5
6
7 => 8

We can also define named arguments, with or without defaults:

1 def say_hello name: "Martin", age: 33
2 puts "Hello #{name} your age is #{age}"
3 end
4
5 say_hello name: "Joseph", age: 7

Arguments can also be variadic:

1 def some_function a, *others
2 puts a
3 others.each do |x|
4 puts x
5 end
6 end
7
8 some_function 1,2,3,4,5

A very neat function is to use argument forwarding to call a function with all used parameters:

1 def print_something string
2 puts string
3 end
4
5 def decorate(...)
6 puts "#" * 50
7 print_something(...)
8 puts "#" * 50
9 end

10
11 decorate "Hello World!"

We can also define a function in more consise way:

Felicitas Pojtinger (fp036) 13

Uni Programming Languages Notes 2022‑10‑24

1 def double(num) = num * 2

3.7 Classes

Besides the functional influence, Ruby is also a radically object‑oriented language. As a result, it
makes working with objects and classes very easy:

1 class Square
2 end

Through the attr_reader, attr_writer and attr_accessor notation we can add instance
variables to a class:

1 class Square
2 attr_accessor :side_length
3 end

They can be read and written with .:

1 s1 = Square.new # creates a new square
2 s1.side_length = 5 # sets its side length
3 puts "Side length of s1 = #{s1.side_length}" # prints the side length

Methods can be defined with def:

1 class Square
2 attr_accessor :side_length
3
4 def area
5 @side_length * @side_length
6 end
7
8 def perimeter
9 4 * @side_length

10 end
11 end

Note the use of @ to access instance variables.

Like many object‑oriented languages, Ruby supports constructors (called initializers):

1 class Square
2 attr_accessor :side_length
3
4 def initialize side_length = 0
5 @side_length = side_length
6 end

Felicitas Pojtinger (fp036) 14

Uni Programming Languages Notes 2022‑10‑24

7
8 def area
9 @side_length * @side_length

10 end
11
12 def perimeter
13 4 * @side_length
14 end
15 end

Variables defined by attr_accessor as public; we can make them private by ommiting their defi‑
nition:

1 class Human
2 def set_name name
3 @name = name
4 end
5
6 def get_name
7 @name
8 end
9 end

In a similar way, we can use private and protected to change the visibility of methods:

1 class Human
2 attr_accessor :name, :age
3
4 def tell_about_you
5 puts "Hello I am #{@name}. I am #{@age} years old"
6 end
7
8 private def tell_a_secret
9 puts "I am not a human, I am a computer program. He! Hee!!"

10 end
11 end

In addition to instance variables, we can also create class variables which work similar to static vari‑
ables in Java using the @@ notation:

1 class Robot
2 def initialize
3 if defined?(@@robot_count)
4 @@robot_count += 1
5 else
6 @@robot_count = 1
7 end
8 end
9

10 def self.robots_created

Felicitas Pojtinger (fp036) 15

Uni Programming Languages Notes 2022‑10‑24

11 @@robot_count
12 end
13 end

Similarly so, we can define class constants like so:

1 class Something
2 Const = 25
3
4 def Const
5 Const
6 end
7 end
8
9 puts Something::Const

While inheritance is not the primary means of reusing code in Ruby, there is support for it in the lan‑
guage using the < notation:

1 class Rectangle
2 attr_accessor :length, :width
3 end
4
5 class Square < Rectangle
6 def initialize length
7 @width = @length = length
8 end
9

10 def side_length
11 @width
12 end
13 end

Wecanoverwritemethods; interestingly it is possible to change a child’s signature anduse thesuper
method in the child:

1 class Square < Rectangle
2 def set_dimension side_length
3 super side_length, side_length
4 end
5 end

I won’t go into more details on these aspects as they are mostly similar to Java; the same goes for
Threads, Exception andmore. One thing uniquely powerful in Ruby is reflection; for example, you can
get the methods of a class as an array using .methods:

1 >> "a".methods
2 =>
3 [:unicode_normalized?,

Felicitas Pojtinger (fp036) 16

Uni Programming Languages Notes 2022‑10‑24

4 :encode!,
5 :unicode_normalize,
6 :ascii_only?,
7 :unicode_normalize!,
8 :to_r,
9 :encode,

10 :to_c,
11 :include?,
12 :%,
13 :*,
14 :+,
15 :unpack,
16 # ...
17]

We can also get private methods using .private_methods, instance variables using .
instance_variables etc.

Another feature fairly unique to Ruby is method aliasing:

1 class Something
2 def make_noise
3 puts "AAAAAAAAAAAAAAHHHHHHHHHHHHHH"
4 end
5
6 alias :shout :make_noise
7 end
8
9 Something.new.shout

This makes it very easy to define multiple method names for things that are frequently interchanged,
such as .delete and .remove, or .filter and .keep_if.

Due to Ruby’s dynamic nature, we can also define classes dynamically and anonymously:

1 person = Class.new do
2 def say_hi
3 'Hi'
4 end
5 end.new

To deal with the complexities of such a dynamic language, Ruby has support for a safe navigation
operator similar to Typescript:

1 class Robot
2 attr_accessor :name
3 end
4
5 robot = Robot.new
6 robot.name = "Zigor"

Felicitas Pojtinger (fp036) 17

Uni Programming Languages Notes 2022‑10‑24

7 puts "The robots name is #{robot.name}" if robot&.name

3.8 Files, Modules and Mixins

We can use therequire function to import things from files; this is very similar to how early NodeJS
works:

1 # break_square.rb
2
3 class Square
4 attr_accessor :side_length
5
6 def perimeter
7 @side_length * 4
8 end
9 end

1 # break_main.rb
2
3 require "./break_square.rb"
4
5 s = Square.new
6 s.side_length = 5
7 puts "The squares perimeter is #{s.perimeter}"

However this quickly leads to problemswith code organization, for examplewhen two functionswith
a different purpose are named the same way. Ruby solves this issue with modules:

1 module Star
2 def line
3 puts '*' * 20
4 end
5 end
6
7 module Dollar
8 def line
9 puts '$' * 20

10 end
11 end

Ifweinclude Starandcallline, wewill print a lineof starts, and ifwedosowithDollar, calling
line again will print dollar signs. Without including line, the method will be undefined.

We can also call methods and access other objects in a module using the :: operator:

1 >> Dollar::line
2 => $$$$$$$$$$$$$$$$$$$$

Felicitas Pojtinger (fp036) 18

Uni Programming Languages Notes 2022‑10‑24

Theinclude keyword can be used to formMixins, whichwill expose reusable code only to a specific
class, i.e. make the Pi constant only accessible from a single class:

1 class Sphere
2 include Constants
3 attr_accessor :radius
4
5 def volume
6 (4.0/3) * Pi * radius ** 3
7 end
8 end

3.9 Metaprogramming

Ruby is a very flexible langauge, and as such it allowsmetaprogramming. For example, directly call a
method using the send function by passing in the speak symbol:

1 class Person
2 attr_accessor :name
3
4 def speak
5 "Hello I am #{@name}"
6 end
7 end
8
9

10 p = Person.new
11 p.name = "Karthik"
12 puts p.send(:speak)

This allows for very powerful, but dangerous things, such as calling arbitrary functions by passing in
the method name as a string:

1 class Student
2 attr_accessor :name, :math, :science, :other
3 end
4
5 s = Student.new
6 s.name = "Zigor"
7 s.math = 100
8 s.science = 100
9 s.other = 0

If we want to give a user access to any of the properties using send, we can get their input using
gets.chop:

1 print "Enter the subject who's mark you want to know: "
2 subject = gets.chop

Felicitas Pojtinger (fp036) 19

Uni Programming Languages Notes 2022‑10‑24

3 puts "The mark in #{subject} is #{s.send(subject)}"

We can also catch a developer calling methods that don’t exist at runtime and handle that usecase
explicitly by implementing a method_missingmethod:

1 class Something
2 def initialize
3 @name = "Jake"
4 end
5
6 def method_missing method, *args, &block
7 puts "Method: #{method} with args: #{args} does not exist"
8 block.call @name
9 end

10 end
11
12 s = Something.new
13 s.call_method "boo", 5 do |x|
14 puts x
15 end

As you can see, we’re now able to call a method that doesn’t exist, and provide the implementation
ourselves:

1 => Method: call_method with args: ["boo", 5] does not exist
2 => Jake

Instead of passing in an implementation in the form of a block ourselves, we can also do other things,
such asmatching the incomingmethod name against a regular expression and thenmanually calling
the method:

1 class Person
2 attr_accessor :name, :age
3
4 def initialize name, age
5 @name, @age = name, age
6 end
7
8 def method_missing method_name
9 method_name.to_s.match(/get_(\w+)/)

10 send($1)
11 end
12 end
13
14 person = Person.new "Zigor", "67893"
15 puts "#{person.get_name} is #{person.get_age} years old"
16
17 => Zigor is 67893 years old

Felicitas Pojtinger (fp036) 20

Uni Programming Languages Notes 2022‑10‑24

It is also possible to use define_method to dynamically define a method at runtime:

1 class Person
2 def initialize name, age
3 @name, @age = name, age
4 end
5 end
6
7 Person.define_method(:get_name) do
8 @name
9 end

10
11 person = Person.new "Zigor", "67893"
12
13 >> person.get_name
14 => "Zigor"

We can also define class methods etc. using define_singleton_method or class_eval and
instance_eval etc. to add arbitrary things such ass attr_accessors to classes or even in‑
stances.

4 Usecases for Ruby

Recommended:

• Scripting
• Web Development, especially old Web 2.0‑style
• MVPs in startups (see Twitter etc.)
• Applications that require excellent extensibility (see Discourse etc.)
• Applications working with highly dynamic data models
• Systems administration on UNIX (i.e. Metasploit, Chef, Puppet, Homebrew)
• “Glue code” between cloud systems (i.e. Fluentd)
• Business Intelligence apps/CRUD systems (esp. with Ruby on Rails)

Not Recommended:

• Latency‑dependend/real‑time applications (garbage collection)
• High throughput systems (i.e. high‑RPS web services)
• Memory‑ or CPU‑constrained systems
• Systems with static data models
• Single‑binary apps/self‑contained applications (use Go)
• Game or desktop application development (lack of bindings)

Felicitas Pojtinger (fp036) 21

Uni Programming Languages Notes 2022‑10‑24

5 Practical Examples

5.1 dRuby

While not recommended inmodern applications (see professor Kriha’s “Distributed Systems” course),
dRuby is an excellent example of an idiomatic Ruby way of creating servers and clients, specifically
distributed objects. We can define a server like so:

1 require 'drb/drb'
2
3 URI = 'druby://localhost:8787'
4
5 class PersonServer
6 attr_accessor :name
7
8 def initialize(name)
9 @name = name

10 end
11
12 def local_time
13 Time.now
14 end
15 end
16
17 DRb.start_service URI, PersonServer.new('Sheepy')
18
19 puts "Listening on to URI #{URI}"
20
21 DRb.thread.join

And interact with the objects on the server like so:

1 require 'drb/drb'
2
3 URI = 'druby://localhost:8787'
4
5 DRb.start_service
6
7 puts "Connecting to URI #{URI}"
8
9 person = DRbObject.new_with_uri URI

10
11 puts "#{person.name} #{person.local_time}"
12
13 person.name = 'Noir'
14
15 puts "#{person.name} #{person.local_time}"

As we can see, with very little code we can get a lot of functionality.

Felicitas Pojtinger (fp036) 22

Uni Programming Languages Notes 2022‑10‑24

Demo: Write such a service and expose it to the internet with ssh -R, then consume it

5.2 Sinatra

Aside from Ruby on Rails, Sinatra is a very neat web framework. You can define a web server in just
three lines of code:

1 require 'sinatra'
2
3 get '/' do
4 'Hello, world!'
5 end

Handling POST requests and parsing data is also very simple:

1 before do
2 next unless request.post?
3
4 request.body.rewind
5 @request_payload = JSON.parse request.body.read
6 end
7
8 post '/' do
9 @request_payload['name']

10 end

By using ERB, we can render templates very easily:

1 require 'sinatra'
2
3 get '/' do
4 @name = params['name']
5
6 erb :index
7 end

1 <!DOCTYPE html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8" />
5 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
6 <meta name="viewport" content="width=device-width, initial-scale

=1.0" />
7 <title>ERB Learning</title>
8 </head>
9 <body>

10 <h1>Hello, <%= @name %>!</h1>
11 </body>
12 </html>

Felicitas Pojtinger (fp036) 23

Uni Programming Languages Notes 2022‑10‑24

Demo: Add a webserver with a dRuby interface for setting the data

6 Questions

Felicitas Pojtinger (fp036) 24

	Introduction
	Contributing
	License

	Overview
	General Design
	Implementation Details
	Users
	Timeline

	Syntax
	Logic
	Loops
	Arrays
	Hashes
	Ranges
	Functions
	Classes
	Files, Modules and Mixins
	Metaprogramming

	Usecases for Ruby
	Practical Examples
	dRuby
	Sinatra

	Questions

