Uni Programming Languages Notes

Felicitas Pojtinger (fp036)
2022-10-24

Introduction

These study materials are heavily based on professor lhler's “Aktuelle
Programmiersprachen” lecture at HdM Stuttgart.

Found an error or have a suggestion? Please open an issue on GitHub
(github.com/pojntfx/uni-programminglanguages-notes):

Figure 1: QR code to source repository

https://www.hdm-stuttgart.de/studierende/abteilungen/sprachenzentrum/kursangebot/kursangebot/block?sgname=Medieninformatik+%28Bachelor%2C+7+Semester%29&sgblockID=2573358&blockname=Aktuelle+Programmiersprachen&sgang=550033
https://www.hdm-stuttgart.de/studierende/abteilungen/sprachenzentrum/kursangebot/kursangebot/block?sgname=Medieninformatik+%28Bachelor%2C+7+Semester%29&sgblockID=2573358&blockname=Aktuelle+Programmiersprachen&sgang=550033
https://github.com/pojntfx/uni-programminglanguages-notes

License

AGPLW

Fres Soffware

Figure 2: AGPL-3.0 license badge

Uni Programming Languages Notes (c) 2022 Felicitas Pojtinger and
contributors

SPDX-License-ldentifier: AGPL-3.0

Overview

General Design

- “A dynamic, open source programming language with a focus on
simplicity and productivity. It has an elegant syntax that is natural to
read and easy to write”

- Inspired by Perl, Smalltalk, Eiffel, Ada, Lips

- Multi-paradigm from the beginning: Functional, imperative and
object-oriented

- Radical object orientation: Everything is an object, there are no
primitive types like in Java
(5.times { print "We xlovex Ruby -- it's outrageous!” })

- Very flexible, i.e. operators can be redefined

- Built-in blocks (closures) from the start, excellent mapreduce
capabilities

- Prefers mixins over inheritance

- Syntax uses limited punctuation with some notable exceptions
(instance variables with @, globals with $ etc.) &

Implementation Details

- Exception handling similar to Java & Python, but no checked
exceptions

- Garbage collection without reference counts

- Simple C/C++ extension interface

- 0S independent threading & Fibers, even if OS is single-threaded
(like MS-DOS)

- Cross-platform: Linux, macOS, Windows, FreeBSD etc.

- Many implementation (MRI/CRuby, JRuby for Ruby in the JVM,
TruffleRuby on GraalVM, mruby for embedded uses, Artichoke for
WebAssembly and Rust)

Users

- Twitter

- Mastodon
- GitHub

- Airbnb

- Shopify

- Twitch

- Stripe

-+ Etsy

- Soundcloud
- Basecamp
- Kickstarter

- First concepts and prototypes ~1993

- First release ~1995, became most popular language in Japan by 2000

- Subsequent evolution and growth outside Japan

- Ruby 3.0 released ~2020, introducing a type system for static analysis,
fibers (similar to Goroutines, asyncio etc.), and completing
optimizations making it ~3x faster than Ruby 2.0 (from 2013)

Syntax

Typical logical operators
>>) < 3

=> true

>>’|==2
=> false

Comparisons are type checked:
>> 1 == "1"

=> false

Trip equals can be used to check if if an instance belongs to a class:

>> String === "abc”
=> true

If alece eote work ac exnected:

Ruby has the for loop that we are all used to, but also more specialized
constructs that allow for more expressive usecases:
for i in 0..10
p i
end

For example upto and downto methods:

10.downto 1 do [num]|
p num
end

17.upto 23 do |il
print "#{i}, "
end

Or the time<s method which ics miich more readable-

Arrays in Ruby can contain multiple types and work as expected; there is

no array vs collection divide:

my_array = [”"Something”, 123, Time.now]

Instead of loops you can use the each method to iterate:

my_array.each do |element]|
puts element
end

We can use << to add things to an array:

>> countries << "India”
=> ["India"]
>> countries
=> ["India"]

>> countries.size

Hashes can be used to store mapped information:

mark = {}

mark['English '] = 50
mark['Math'] = 70
mark['Science'] = 75

And we can define a default value:

mark = {}
mark.default = 0
mark['English '] = 50
mark['"Math'] = 70
mark['Science'] = 75

The hash literal {} also allows us to create hashes with pre-filled
information: i

II%HE%%II

Ranges are a cool concept in Ruby that we've used before. We can use
them with the .. notation:

=>

>> (1..5).each {lal print "#{a},u" }
1, 2, 3, 4, 5, => 1..5

’

We can also use them on strings:

>> ("bad”.."bag”).each {lal print "#{a}, " }
=> bad, bae, baf, bag, => "bad”.."bag”

They can be very useful in case statements, where you can replace lots of
or operators with them:

grade = case mark
when 80..100
N
when 60..79

Functions

As mentioned before, Ruby draws a lot of inspiration from functional

programming languages, and functions are a primary building block in the
language as a result.
We can define functions with def and call them without parentheses:

def print_line
puts '_' % 20
end

print_Lline

It is also possible to define default arguments unlike in Java:
def print_line length = 20

puts '_'xlength
end

Besides the functional influence, Ruby is also a radically object-oriented
language. As a result, it makes working with objects and classes very easy:

class Square
end

Through the attr_reader, attr_writer and attr_accessor notation we can
add instance variables to a class:

class Square
attr_accessor :side_length
end

They can be read and written with .:

s1 = Square.new # creates a new square
s1.side_length = 5 # sets its side length

”

A . . 1%
puts "Sideylengthyofysty=u#{s1.side_length}” # prints the si

Files, Modules and Mixins

We can use the require function to import things from files; this is very
similar to how early Node)S works:

break_square.rb

class Square

attr_accessor :side_length

def perimeter
@side_length x 4
end
end

break_main.rb

require "./break_square.rb” 15

Metaprogramming

Ruby is a very flexible langauge, and as such it allows metaprogramming.
For example, directly call a method using the send function by passing in
the speak symbol:

class Person

attr_accessor :name

def speak
"Helloy !l ,amy#{@name}”
end

end

p = Person.new
p.name = "Karthik”
puts p.send (:speak)

Usecases for Ruby

Usecases for Ruby

Recommended:

- Scripting

- Web Development, especially old Web 2.0-style

- MVPs in startups (see Twitter etc.)

- Applications that require excellent extensibility (see Discourse etc.)

- Applications working with highly dynamic data models

- Systems administration on UNIX (i.e. Metasploit, Chef, Puppet,
Homebrew)

- “Glue code” between cloud systems (i.e. Fluentd)

- Business Intelligence apps/CRUD systems (esp. with Ruby on Rails)

Not Recommended:

- Latency-dependend/real-time applications (garbage collection)
- High throughput systems (i.e. high-RPS web services)

- Memorv- or CPll-constrained svstems

Practical Examples

While not recommended in modern applications (see professor Kriha's
“Distributed Systems” course), dRuby is an excellent example of an
idiomatic Ruby way of creating servers and clients, specifically distributed
objects. We can define a server like so:

require 'drb/drb"
URI = 'druby://localhost:8787"

class PersonServer

attr_accessor :name

def initialize (name)
@name = name
end

Aside from Ruby on Rails, Sinatra is a very neat web framework. You can

define a web server in just three lines of code:

require 'sinatra'

get '/' do
"Hello ,yworld !’

end

Handling POST requests and parsing data is also very simple:

before do
next unless request.post?

request.body.rewind

@request_payload = JSON.parse request.body.read
19

end

Questions

	Introduction
	Contributing
	License

	Overview
	General Design
	Implementation Details
	Users
	Timeline

	Syntax
	Logic
	Loops
	Arrays
	Hashes
	Ranges
	Functions
	Classes
	Files, Modules and Mixins
	Metaprogramming

	Usecases for Ruby
	Practical Examples
	dRuby
	Sinatra

	Questions

