
The SolarWinds Attack and
Farm‑to‑table Methods in the
Development Process
Mitigating disasters through supply chain security

Felicitas Pojtinger (Stuttgart Media University)

2022‑01‑08



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

Abstract

While supply chain attacks have drawn public attention recently due to the high‑profile
SolarWinds attack, research around the subject is still new. The growing complexity of
modern software has led to state of the art supply chains growing into complex sociotech‑
nical systems, the fundamental concepts of which as well as their current security state
have been examined. Special focus is put on the relation of social and technical threat
vectors during themodellingof the supply chain, anda technical implementation, in‑toto,
is introduced as a reference of a holistic supply chain security system. By examining its
countermeasures for historical supply chain attacks, in‑toto’s effectiveness is measured,
resulting in a high level of protection.

Contents

1 Introduction 2

2 RelatedWork 2

3 The SolarWinds Attack 2

4 Overview of Supply Chain Security 3

5 Modeling the Supply Chain 4

6 in‑toto, a Framework for Supply Chain Security 6

7 Results 8

8 Summary and Conclusions 10

References 11

Felicitas Pojtinger (Stuttgart Media University) 1



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

1 Introduction

On 13 December 2020, FireEye, a US‑based cybersecurity company, detected a large supply chain at‑
tackdirectedat customersofSolarWindsusing theirOrionmonitoringandmanagement solution. The
actors of the attack, which are nowbelieved tobeof Russian origin[1], were able to gain access to data
of several high‑profile private and public institutions. While the attackwas detected andmade public
by late 2020, it has been active since at least Spring 2020, resulting in widespread lateral movement
and data theft. While high‑profile attacks against institutions have become more frequent in recent
years, the sophistication and threat vector of this attack has shown the need formore advancedmod‑
elling techniques and securitymeasures for supply‑chain security, which this paper tries to introduce
the reader too.

2 RelatedWork

FireEye provides the initial report on the SolarWinds Attack, detailing the attack’s architecture, result‑
ing vulnerabilities and information about the attackers[2]. Sherman gives an overview of the past
and presents risks in the supply chain and make general recommendations on means of preventing
them[3]. Al Sabbagh and Kowalski present a framework to model a software supply chain from a so‑
cial and technical perspective, with a focus on highlighting ways to find threats in existing chains[4].
Torres‑Arias, Afzali, Kuppusamy, Curtmola and Cappos introduce a concrete implementation of a sys‑
tem with a holistic approach to supply chain security, as well as an analysis of its level of protection
against historical attacks[5].

3 The SolarWinds Attack

In the case of the SolarWinds attack, the backdoor was built into a digitally signed component of the
Orion platform (SolarWinds.Orion.Core.BusinessLayer.dll) which communicates with
external servers using HTTP. After an initial dormant period of up to twoweeks, themalicious compo‑
nent was able to receive commands such as transferring and executing files, profiling a system, dis‑
abling services and issuing reboots from command and control infrastructure. Traffic was obfuscated
as bymasquerading as telemetry communications similar in structure to the Orion Improvement Pro‑
gram. In addition to these obfuscation methods, the malware is sandbox‑aware to evade detection
by antivirus tools and increase the effort required to do forensics.

In order to deliver the malware to users of SolarWinds Orion, the supply chain was attacked. The
attackers were able to compromise SolarWinds’ keys and digitally sign a trojanized version of a Win‑
dows Installer Patch file, which was distributed using the existing update infrastructure and, after the

Felicitas Pojtinger (Stuttgart Media University) 2



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

update process, loaded by the host process. Signature checks did not fail due to the key compromise.
Attacks were then able to connect to command and control infrastructure by resolving a subdomain’s
CNAME record[2].

4 Overview of Supply Chain Security

While supply chain attacks are not a new occurrence, the SolarWinds attack has forced both develop‑
ers and security analysts to take the subjectmore seriously. Historically, most software did not have a
particularly complex supply chain; software was limited in size, function and audience, organizations
had their own developers and created, for the most part, their own software without many external
dependencies. Modern software development has however led to a strong increase in supply chain
complexity, as modern software is large enough for it not be manageable by a single organization.

As a result, modern software development is in large part about assembly of existing software, which
leads to very long supply chains. A typical “Web 2.0” application could for example include an
app server, HTTP server, XML parser, database client, C libraries & compiler, all of which also have
their own supply chains. In recent years, in addition to toolchain corruption (such as in the case
of XCodeGhost[6]) becoming more and more of an issue, both popular proprietary software and
libre software have shown vulnerabilities affecting software released over multiple years (such as
for example the “Heartbleed” or “Shellshock” vulnerabilities). In addition to libraries impacting a
delivered product, the usage of generated data from tools such as TensorFlow or PyTorch, as well
as the use of publically available or scraped data such as from Data.gov and Google’s “Open Images
Dataset” leads to new attack vectors on the software supply chain.

Due to multiple high‑profile attacks, the interest in means to reduce the risk factors of software sup‑
ply chains has risen. Simple ways to start reducing risk could, for example, include enforcing rules for
suppliers so that they start to follow best practices too, internally ensuring the security and validity
of the delivered product by inspection, analysis of themeans of delivering the product, and enforcing
operational product control so that the product is used securely. From an educational perspective,
notarizing the level of security knowledge of employees, ensuring that non‑expired educationmater‑
ial is used and the credentials of instructors are known, can lead to a reduction in risk. When it comes
to checking the suppliers, enforcing the availability or design documents, analysis of attack patterns
and the usage of code signing can be used.

At the heart of many supply chain security practices lies the analysis of product delivery methods.
Downstreamsof software intended for further processingor integration (suchas libraries, frameworks
or tooling), inherit the consequences of badupstreamsecurity practices. As a result, a consumermust
require good security practices by their supplies and asses the risk of delivered products in their used
context, which the original authors might not have taken into account (such as the use of software

Felicitas Pojtinger (Stuttgart Media University) 3



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

without proper memory protection in environments such as spacecraft, where high radiation levels
frequently lead tomemory corruption). As a result, theusageof “unchecked” internal supplies should
be reduced. This is of particular interest when it comes to integrating external libre software into both
own libre software and proprietary software, in which case the recommended way of consuming the
external code is to establish a supplier. This can for example be a third party focused on libre software
(i.e. RedHat or SUSE), which allows for an evaluation similar to that of proprietary software based on
supplier capability, product security, product distribution and operation product control[3].

5 Modeling the Supply Chain

Fundamentally, software supply chainshavea lot in commonwithphysical or hardware supply chains.
Supply chains are created by either deploying and using a product directly or by reproducing it as a
new product in repetition, and as a result, traditional supply chains tend to have risks such as late
product delivery, counterfeits and human errors. Many of these risks also apply to software supply
chains and, just like they are in traditional supply chains, must be counteracted using risk manage‑
ment, for which a threat model is a prerequisite. Current practices mostly follow on the classical CIA
triad (confidentiality, integrity, availability), while software supply chains also require the security
objectives of confidentiality, (data) integrity, source authenticity, availability and non‑repudiation.
While organizations such asNIST publish best practices[7], concretemodels of software supply chains
are still a rather new subject.

This is in part due to software supply chains requiring the modeling of social and technical behavior
in order to model the system and threats to it. Unlike many other security‑related models, these do‑
mains can not be viewed as purely technical or social, but only as a combination of the two. The basis
of modeling the system could for example be ISO 27005[8], which defines a thread as the potential
cause of an incident that might result in harm to systems and organizations. The resulting model
should express and capture as many threats as necessary and differentiate between actual threats
and potential threats, where the former fulfills the requirements of intention, capability and opportu‑
nities, while the latter might lack one or multiple of the three. The detection of potential threats by
the model however is important, as they can potentially be prevented by acting early.

Vulnerabilities in the supply chain can be found by analyzing the relations of the integrated elements,
which each compose a threat in the system. Themodel presented by Al Sabbagh and Kowalski, which
intents tomodel both the technical and social elements of supply chain security, introduces two sub‑
systems: Adynamicmodel of sociotechnical changes (the “sociotechnical” system) anda staticmodel
(“security by consensus”). The social subsystem contains culture (collection of values) and structure
(distribution of power), while the technical subsystem containsmethods andmachines, such as tech‑
nical artifacts. The observation of these four subsystems (culture, structure, methods andmachines)

Felicitas Pojtinger (Stuttgart Media University) 4



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

determines the security state of the system as a whole; if one part of the system changes, the oth‑
ers must adapt accordingly in order to maintain security (i.e. if new, younger managers arrive, the
“structure” parametermight require adjustment). The security by consensus system defines layers of
analysis, such as ethical, political and legal, administrative and managerial, operation, application,
operating system, and hardware, whichmakes it possible to determine the correct layers onwhich to
look out for and react to threats.

Both internal or external changes, whether of technical or social nature, will affect security, which
requires the systematic rollout of measures. While security frameworks allow analyzing supply chain
security using individual layers, only looking at the supply chain as an interconnected sociotechnical
system allows reviewers to verify that the layers across the system are secured properly (as issues or
protections in one layer might be negated by measures in another layer). A layered approach also
allows for the horizontal analysis of supplier’s supply chains and enforcement of measures not at the
boundaries of their products and trust, but also based on similarity with one’s ownmeasures on each
layer. Comparing the different layers of each supplier’s sociotechnical systems allows for creating an
integratedchainof (dis‑)trust,where for example thenegationof theeffectivenessofdigital signatures
for the compiler binaries by compiling unsigned source code or not checking the provided binaries’
signatures is detectable.

When analyzing a supply chain, multiple distinct processes can be found: Supplier sourcing, software
development and testing, software packaging and software delivery through network (or, in the case
of i.e. embedded software, software product manufacturing and physical software product delivery).
During analysis, the products or artifactswhich are being sent between the different processes can be
the subject of checks. Both supplier sourcing andproduct delivery naturally link companies andother
entities together, which often leads to a generic process like software packaging. In this way, both
libre software and proprietary software is being transmitted from supplier sourcing to the software
development and testing process, including related secrets and vulnerability information, leading to
multiple resulting elements being sent to the user, over the network or physically (such as secrets,
vulnerabilities information, source and/or binary package, and the user guide).

In order to find social threats after applying this modelling process, which might exist due to human
error or behavioral patterns (intentional or not), the security by consensus model can be used. A
supplier can for example deny having sent a product, leading to a non‑repudiation issue. Ordered
software products also might not arrive in time due to QA problems, leading to an availability issue;
additionally, secrets of outsourced software might be disclosed by employees (such as hard‑coded
keys or seed values) or the user might make configuration mistakes, such as choosing very short key
lengths, if the user guide (which is being distributed as part of the product through the supply chain)
has been tampered with.

Technical threats in the supply chain can be analyzed using the bottom three layers of the security by

Felicitas Pojtinger (Stuttgart Media University) 5



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

consensus model (hardware, operating system, applications). This could mean vectors such as the
software supplier’s storage hardware being compromised, allowing externals to inject source code
into repositories or packages, outsource software repositories being breached in order to gain access
to hard‑coded keys (such as API keys in CI/CD environment, configured by i.e. GitLab), or compromis‑
ing the download site or update system.

Countermeasures to both types of threats can be either social, technical or both. If a non‑repudiation
issue, such as a recipient of a software product denying receiving it, occurs, a social solution could be
to require a third‑party notary (on the political and legal layer), while the technical countermeasure
might be to use digital signatures to verify the authenticity of the delivered product. To prevent injec‑
tion of source code during software distribution, a social solution could be to use a third‑party escrow,
while the technical countermeasure could be to use a VPN or TLS‑secured distribution channels[4].

6 in‑toto, a Framework for Supply Chain Security

in‑toto provides a concrete technical implementation of a supply chain security system. It tries to
protect against supply chain attacks based on version control systems (such as the breaches of the
Linux kernel, Gentoo and Google), build environment (such as the CCleaner breach), software up‑
daters (such as the breaches of Microsoft, Adobe, Google and various Linux distros such as Debian)
and others.

Current supply chain security systems aremostly limited to securing individual steps. Technical mea‑
sures include for example Git commit signing, which allows for controlling what developers canmod‑
ify in a repo, reproducible builds, which enables (re‑)building a package by multiple parties and en‑
suring a bit‑by‑bit identical result, and various methods of software delivery, such as APT, DNF or
Flatpak. While securing these individual steps is useful and increases security to a certain extent, is
leaves open the possibility of modifying the result of a step and passing the modified result to the
next step in a chain without the changes being noticed; in other words, there is no way to verify that
the correct steps were followed in order or that the artifacts between the individual steps were not
tampered with. The problem with the lack of such checks was made apparent by attacks such as
the Linux Mint breach[9], where a compromised web server enabled redirection of installation image
download links, resulting in the distro’s internal signature checks being negated, even though no key
compromise took place. Furthermore, despite fuzzing and static code analysis tools being usedmore
andmore during software development, the delivered product rarely includes information about the
results of these products for the end‑user to verify. The analysis of historical attacks thus shows that
solutionsdesigned to secure individual supply chain steps cannot guarantee the security of the supply
chain as a whole, and further integration is required to improve it.

in‑toto provides such a holistic approach and tries to enforce the integrity of the entire supply chain.

Felicitas Pojtinger (Stuttgart Media University) 6



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

It requires the declaration and signing of a layout defining howand bywhomwhich steps in the devel‑
opment and release process are to be carried out, thus allowing much greater integration across the
supply chain. In addition to this, it also enables involved parties to record actions and create a signed
statement for each step in the supply chain (“link metadata”), which makes each step verifiable as in
checking if it has been executed appropriately and by the correct party. Doing so is made possible by
using checks, which are requirements such as there being no known CVEs in included libraries, or the
definition of step intended for translation only being able to create .po files in specified directories.
In addition to this, in‑toto strives to provide security even in the case of a (partial) key compromise by
not being a “lose‑one, lose‑all” solution.

Due to the relative novelty of research into supply chain security, in‑toto also provides a significant
amount of terminology. It defines a supply chain as being a series of steps performed in order to cre‑
ate and distribute a product, with a step being an operation in the chain taking materials (i.e. source
code and artifacts) and creating products (libraries, packages, binaries etc.), which may be executed
in parallel or on multiple host for speed or reproducibility. Artifacts in in‑toto are defined as materi‑
als and products (including both source code and binaries), while byproducts are metadata such as
the STDOUT, STDERR or the return value of a step. Link metadata is a concept central to in‑toto; it
contains all the materials, products and byproducts for a step and is signed by a functionary, a party
performing a step. Functionaries can for example commit code, build software, performQAor localize
docs; they can also be a human entity, providing sign‑offs on releases, or a number of hosts provid‑
ing redundancy or consensus. in‑toto also defines the role of the project owner, which is the entity
defining the rules for each step in the supply chain and the root of trust. The project owner defines
the layout, which is the file defining the steps to be performedby the functionaries, rules for products,
byproducts, materials and inspections. The framework also explicitly defines the client, which is the
entity that cryptographically validates a delivered product (containing the software, layout and link
metadata) by using inspections, which are defined actions to be performed by the client. In real appli‑
cations, the project owner could be a libre software maintainer, a functionary might be a build farm
and a client could be an end user.

As a result, in‑toto can protect against supply chain attacks by preventing a number of attack vectors
that protecting individual steps alone can not. This includes protection against changing an artifact
between two steps (thus preventingmodified output from being the input of the next step in a chain),
acting as a step without authorization (such as acting as a compiler introducing malware into com‑
piled binaries), providing a delivered product for which steps (such as testing or signing) where not
performed, including outdated or vulnerable elements or providing a counterfeit version of the deliv‑
ered product to users. in‑toto managed supply chains can thus guarantee security goals such as sup‑
ply chain layout integrity (all steps have been performed in the correct order), artifact flow integrity
(artifacts can not be changed in between steps), step authentication (steps can only be performed by
the intendedparties), implementation transparency (existing supply chainsneednotbechanged)and

Felicitas Pojtinger (Stuttgart Media University) 7



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

graceful degradation of security properties, so that in the event of key compromise, not all security
properties are lost.

Without a key compromise, in‑toto protects against a lot of attacks vectors, as even in the case of a
breach of infrastructure or communication channels, attackers would not be able to modify artifacts
inbetween twostepsordeliveredproducts due to signature validation. Additionally, attackers cannot
provide a product withmissing or reordered steps due to the embedded layout detecting the tamper‑
ing, or provide faulty link metadata as the link metadata is signed. As stated earlier, in‑toto intends
to still retain some level of protection in the case of a key compromise, with the level of protection
varying with the severity of the breach. If an individual functionary’s key is compromised, an attacker
can for example fake that a step has been run (i.e. a signing or testing step) when it actually didn’t run,
provide a tampered artifact as input to the next step in the chain (product modification), not remove
artifacts which should have been removed (i.e. exploitable debug binaries); thus, if a functionary’s
key is compromised, flow integrity and step authentication are violated (the attacker can fake link
metadata), but the attack surface is limited by the rules (permissions) which the functionary has been
assigned. Unintended retention would for example only be possible if a DELETE rule is missing. This
vector can also be somewhat counteracted by requiring multiple parties to do a job, thus requiring a
breach of multiple host’s keys. In the case of a project owner key compromise, a redefinition of the
layout and thus arbitrary supply chain control is possible; due to the infrequent need to access the
layout key however it is rarely used, which allows for offline storage, requiring a physical breach and
further reducing the attack vector.

In practice, it should be noted that users might respond differently to chain validation errors depend‑
ing on context. If a user is for example testing out a package in a testing VM, they might choose to
ignore the error, while a user deploying software to a production system will probably report the val‑
idation failure and not proceed with installations. Actions taken in response to link metadata vali‑
dation are thus suspected to be similar to those taken in response to package signature validation
failures today.

7 Results

When evaluating the effectiveness of supply chain security systems against historical supply chain at‑
tacks, it is important to keep the context of their application in mind. Three applications (a Linux dis‑
tribution, cloud‑native deployment and a language‑specific package manager) have been analyzed,
which each lead to different levels of security.

In the case of Linux distribution, the Debian rebuilders project was chosen by the in‑totomaintainers.
Debian rebuilders are part of the reproducible builds project, which intents to create bit‑by‑bit repro‑
ducible package definitions, meaning that a source package can be rebuilt on a separate host and

Felicitas Pojtinger (Stuttgart Media University) 8



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

result in a binary which is bit‑by‑bit identical to the original build. In this case, a apt-transport
for in‑totometadata has been implemented, which is used to provide attestations of the validity of re‑
sulting builds using link metadata. This allows for cryptographically asserting that a Debian package
has been reproducibly build by 𝑘 out of 𝑛 hosts and the build farm; unauthorized modification of a
package would require breaching at least 𝑘 out of 𝑛 rebuilders.

As for the cloud‑native and containerized buildswith Jenkins and Kubernetes, it should be noted that
such setups require high levels of automation and static configuration; the exporters of in‑toto meta‑
data thusmust be both host‑ and infrastructure‑agnostic. In the case studied by in‑toto, this has lead
to the implementation of a Jenkins plugin and a Kubernetes admission controller, which allows for
the tracking of all operations in the cluster. Here, pipelines function as coordinators, while workers
are functionaries and submit metadata into an in‑toto metadata store, with the admission controller
validating this information before deploying resources.

The highest level of protection was recorded for the language‑specific (Python) package manager; in
this case, end to end verification of Python packages was implemented. A tag step outputs Python
source code and YAML config files as products, which are then signed using a YubiKey. A builder step
receives the signed source code, builds a Pythonwheel (transferable artifact), and updatesmetadata.
A signer step receives source from the first step and signs it; this step is separate from the builder
step due to Python’s packaging design allowing potentially dangerous arbitrary code execution. The
inspections executed by the client verify whether the build wheel matches thematerials of the signer
and the source code from the first step, thus providing end to end verification. Furthermore, “The
Update Framework” (TUF) is used to provide a higher layer of signedmetadata and replay protection
and offline keys are used, resulting in breaches of infrastructure not leading to key compromise.

Storage overhead of in‑toto stays at manageable levels; in case of the Python application, in‑toto ac‑
counted for a ~19% increase in repository size. While this level is still manageable, it should be noted
that i.e. TUF is able to keep its metadata about 1/4 of this size; the overhead is primarily due to the
data being stored as part of the pipeline and large signatures due to safe key lengths adding to the file
size, which could beoptimized. In termsof network overhead,which is an impact of importancewhen
distributing software updates to many users, in‑toto scales linearly with the number of files, not file
size. Metadata size amounts to ~44%of package size, but can escalate ifmany small files are included.
Verification layout has been noted to be very low, taking only ~0.6s typically on an i7‑6500U‑based
systemwith 8 GB of RAM[5].

Felicitas Pojtinger (Stuttgart Media University) 9



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

8 Summary and Conclusions

Assessment of protection against previous breaches was done in three categories: Control of infra‑
structure but not functionary keys, control of parts of the infrastructure or keys of a specific func‑
tionary, and control of the entire supply chain by compromising the project owner infrastructure, in‑
cluding keys. In tests, the majority of surveyed attacks (23/30) did not include a key compromise.
In this case, in‑toto’s client inspection would have detected the tampering. The Keydnap attack, in
which an Apple developer certificate was stolen and used to sign a malicious software package, in‑
spection with in‑toto would have detected the attack due to an unauthorized functionary signing the
link metadata. In another attack, the developer’s SSH key was used to sign a malicious Python pack‑
age; this would have been prevented with in‑toto as the files extracted from the malicious package
would not match the source coded recorded in the first step of the chain in case of the Python pack‑
agemanager implementation of in‑toto. The CCleaner and RedHat attackswould not have been effec‑
tive against both the reproducible builds/Debian and Python deployments of in‑toto due to multiple
hosts building the artifacts, with only the cloud‑native deployment lacking a threshold mechanism.
In total, both the cloud‑native (with 83% prevention as a result of in‑toto usage) and reproducible
builds/Debian deployments (with 90% prevention) of in‑toto would have prevented most historical
supply chain attacks. The integration of secure update systems with end‑to‑end verification as in the
Python deployment provides further protection (against 100%of the surveyed historical supply chain
attacks in this case), whichhighlights that further improvement opportunities in supply chain security
exist.

Felicitas Pojtinger (Stuttgart Media University) 10



The SolarWinds Attack and Farm‑to‑table Methods in the Development Process 2022‑01‑08

References

[1] K. Paul, “What you need to know about the biggest hack of the US government in years,” The
Guardian. Dec. 2020.Available: https://www.theguardian.com/technology/2020/dec/15/ori
on‑hack‑solar‑winds‑explained‑us‑treasury‑commerce‑department

[2] FireEye, “Highly evasive attacker leverages SolarWinds supply chain to compromise multiple
global victimswith SUNBURST backdoor.” Mandiant, Dec. 2020.Available: https://www.mand
iant.com/resources/evasive‑attacker‑leverages‑solarwinds‑supply‑chain‑compromises‑
with‑sunburst‑backdoor

[3] M. Sherman, “Risks in the software supply chain,” CARNEGIE‑MELLON UNIV PITTSBURGH PA
PITTSBURGH United States, 2019.

[4] B. Alsabbagh and S. Kowalski, “A socio‑technical framework for threat modeling a software
supply chain,” IEEE Security & Privacy, vol. 13, pp. 30–39, Jul. 2015, doi: 10.1109/MSP.2015.72.

[5] S. Torres‑Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, andJ. Cappos, “In‑toto: Providing farm‑
to‑table guarantees for bits and bytes,” 2019.

[6] C. Xiao, “NovelmalwareXcodeGhostmodifies xcode, infects apple iOSappsandhits app store.”
Palo Alto Networks, Sep. 2015.Available: https://unit42.paloaltonetworks.com/novel‑malw
are‑xcodeghost‑modifies‑xcode‑infects‑apple‑ios‑apps‑and‑hits‑app‑store/

[7] J. Boyens, A. Smith, N. Bartol, K. Winkler, A. Holbrook, and M. Fallon, “Cyber supply chain risk
management practices for systems and organizations,” National Institute of Standards; Tech‑
nology, 2021.

[8] “Information technology ‑ security techniques ‑ information security risk management.” ISO,
Geneva, Switzerland, 2018.

[9] Z. Whittaker, “Hacker explains how he put ”backdoor” in hundreds of linux mint downloads,”
ZDNet. Feb. 2016.Available: https://www.zdnet.com/article/hacker‑hundreds‑were‑tricked‑
into‑installing‑linux‑mint‑backdoor/

Felicitas Pojtinger (Stuttgart Media University) 11

https://www.theguardian.com/technology/2020/dec/15/orion-hack-solar-winds-explained-us-treasury-commerce-department
https://www.theguardian.com/technology/2020/dec/15/orion-hack-solar-winds-explained-us-treasury-commerce-department
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://doi.org/10.1109/MSP.2015.72
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://www.zdnet.com/article/hacker-hundreds-were-tricked-into-installing-linux-mint-backdoor/
https://www.zdnet.com/article/hacker-hundreds-were-tricked-into-installing-linux-mint-backdoor/

	Introduction
	Related Work
	The SolarWinds Attack
	Overview of Supply Chain Security
	Modeling the Supply Chain
	in-toto, a Framework for Supply Chain Security
	Results
	Summary and Conclusions
	References

