The SolarWinds Attack and Farm-to-table Methods in
the Development Process

Mitigating disasters through supply chain security

Felicitas Pojtinger (Stuttgart Media University)
2022-01-08



Introduction



Introduction

On 13 December 2020, FireEye, a US-based cybersecurity company,
detected a large supply chain attack directed at customers of SolarWinds
using their Orion monitoring and management solution. The actors of the
attack, which are now believed to be of Russian origin[1], were able to gain
access to data of several high-profile private and public institutions. While
the attack was detected and made public by late 2020, it has been active
since at least Spring 2020, resulting in widespread lateral movement and
data theft. While high-profile attacks against institutions have become
more frequent in recent years, the sophistication and threat vector of this
attack has shown the need for more advanced modelling techniques and
security measures for supply-chain security, which this paper tries to
introduce the reader too.



Related Work



Related Work

FireEye provides the initial report on the SolarWinds Attack, detailing the
attack’s architecture, resulting vulnerabilities and information about the
attackers[2]. Sherman gives an overview of the past and presents risks in
the supply chain and make general recommendations on means of
preventing them[3]. Al Sabbagh and Kowalski present a framework to
model a software supply chain from a social and technical perspective,
with a focus on highlighting ways to find threats in existing chains[4].
Torres-Arias, Afzali, Kuppusamy, Curtmola and Cappos introduce a
concrete implementation of a system with a holistic approach to supply
chain security, as well as an analysis of its level of protection against
historical attacks([5].



The SolarWinds Attack



The SolarWinds Attack

In the case of the SolarWinds attack, the backdoor was built into a
digitally signed component of the Orion platform
(Solarwinds.Orion.Core.BusinessLayer.dll) which communicates with
external servers using HTTP. After an initial dormant period of up to two
weeks, the malicious component was able to receive commands such as
transferring and executing files, profiling a system, disabling services and
issuing reboots from command and control infrastructure. Traffic was
obfuscated as by masquerading as telemetry communications similar in
structure to the Orion Improvement Program. In addition to these
obfuscation methods, the malware is sandbox-aware to evade detection
by antivirus tools and increase the effort required to do forensics.

In order to deliver the malware to users of SolarWinds Orion, the supply
chain was attacked. The attackers were able to compromise SolarWinds'
keys and digitally sign a trojanized version of a Windows Installer Patch

file which was distributed tisine the existine undate infrastriucture and



Overview of Supply Chain Security




Overview of Supply Chain Security

While supply chain attacks are not a new occurrence, the SolarWinds
attack has forced both developers and security analysts to take the
subject more seriously. Historically, most software did not have a
particularly complex supply chain; software was limited in size, function
and audience, organizations had their own developers and created, for the
most part, their own software without many external dependencies.
Modern software development has however led to a strong increase in
supply chain complexity, as modern software is large enough for it not be
manageable by a single organization.

As a result, modern software development is in large part about assembly
of existing software, which leads to very long supply chains. A typical “Web
2.0" application could for example include an app server, HTTP server, XML
parser, database client, C libraries & compiler, all of which also have their
own supply chains. In recent years, in addition to toolchain corruption

(siich as in the case of XCodeGhostle]) becomine more and more of an



Modeling the Supply Chain




Modeling the Supply Chain

Fundamentally, software supply chains have a lot in common with
physical or hardware supply chains. Supply chains are created by either
deploying and using a product directly or by reproducing it as a new
product in repetition, and as a result, traditional supply chains tend to
have risks such as late product delivery, counterfeits and human errors.
Many of these risks also apply to software supply chains and, just like they
are in traditional supply chains, must be counteracted using risk
management, for which a threat model is a prerequisite. Current practices
mostly follow on the classical CIA triad (confidentiality, integrity,
availability), while software supply chains also require the security
objectives of confidentiality, (data) integrity, source authenticity,
availability and non-repudiation. While organizations such as NIST publish
best practices[7], concrete models of software supply chains are still a

rather new subject.

Thisis in npart due to software sunplv chains reatirine the modeline of



in-toto, a Framework for Supply
Chain Security




in-toto, a Framework for Supply Chain Security

in-toto provides a concrete technical implementation of a supply chain
security system. It tries to protect against supply chain attacks based on
version control systems (such as the breaches of the Linux kernel, Gentoo
and Google), build environment (such as the CCleaner breach), software
updaters (such as the breaches of Microsoft, Adobe, Google and various
Linux distros such as Debian) and others.

Current supply chain security systems are mostly limited to securing
individual steps. Technical measures include for example Git commit
signing, which allows for controlling what developers can modify in a repo,
reproducible builds, which enables (re-)building a package by multiple
parties and ensuring a bit-by-bit identical result, and various methods of
software delivery, such as APT, DNF or Flatpak. While securing these
individual steps is useful and increases security to a certain extent, is
leaves open the possibility of modifying the result of a step and passing

the modified result to the next sten in a chain without the chanoces bheino



Results




When evaluating the effectiveness of supply chain security systems
against historical supply chain attacks, it is important to keep the context
of their application in mind. Three applications (a Linux distribution,
cloud-native deployment and a language-specific package manager) have
been analyzed, which each lead to different levels of security.

In the case of Linux distribution, the Debian rebuilders project was chosen
by the in-toto maintainers. Debian rebuilders are part of the reproducible
builds project, which intents to create bit-by-bit reproducible package
definitions, meaning that a source package can be rebuilt on a separate
host and result in a binary which is bit-by-bit identical to the original
build. In this case, a apt-transport for in-toto metadata has been
implemented, which is used to provide attestations of the validity of
resulting builds using link metadata. This allows for cryptographically
asserting that a Debian package has been reproducibly build by & out of n

hosts and the build farm: unauthorized modification of a nackase wouild



Summary and Conclusions




Summary and Conclusions

Assessment of protection against previous breaches was done in three
categories: Control of infrastructure but not functionary keys, control of
parts of the infrastructure or keys of a specific functionary, and control of
the entire supply chain by compromising the project owner infrastructure,
including keys. In tests, the majority of surveyed attacks (23/30) did not
include a key compromise. In this case, in-toto’s client inspection would
have detected the tampering. The Keydnap attack, in which an Apple
developer certificate was stolen and used to sign a malicious software
package, inspection with in-toto would have detected the attack due to an
unauthorized functionary signing the link metadata. In another attack, the
developer’s SSH key was used to sign a malicious Python package; this
would have been prevented with in-toto as the files extracted from the
malicious package would not match the source coded recorded in the first
step of the chain in case of the Python package manager implementation
of in-toto. The CCleaner and RedHat attacks would not have been effective ~ °



References




References

(1]

K. Paul, “What you need to know about the biggest hack of the US
government in years,” The Guardian. Dec. 2020.Available: https://
www.theguardian.com/technology/2020/dec/15/orion-hack-solar-
winds-explained-us-treasury-commerce-department

(2]

FireEye, “Highly evasive attacker leverages SolarWinds supply chain
to compromise multiple global victims with SUNBURST backdoor”
Mandiant, Dec. 2020.Available: https://www.mandiant.com/res
ources/evasive-attacker-leverages-solarwinds-supply-chain-
compromises-with-sunburst-backdoor

(3]
M. Sherman, “Risks in the software supply chain,” CARNEGIE-MELLON
UNIV PITTSBURGH PA PITTSBURGH United States, 2019.

[4] 10


https://www.theguardian.com/technology/2020/dec/15/orion-hack-solar-winds-explained-us-treasury-commerce-department
https://www.theguardian.com/technology/2020/dec/15/orion-hack-solar-winds-explained-us-treasury-commerce-department
https://www.theguardian.com/technology/2020/dec/15/orion-hack-solar-winds-explained-us-treasury-commerce-department
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://www.mandiant.com/resources/evasive-attacker-leverages-solarwinds-supply-chain-compromises-with-sunburst-backdoor
https://doi.org/10.1109/MSP.2015.72
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://unit42.paloaltonetworks.com/novel-malware-xcodeghost-modifies-xcode-infects-apple-ios-apps-and-hits-app-store/
https://www.zdnet.com/article/hacker-hundreds-were-tricked-into-installing-linux-mint-backdoor/
https://www.zdnet.com/article/hacker-hundreds-were-tricked-into-installing-linux-mint-backdoor/
https://www.zdnet.com/article/hacker-hundreds-were-tricked-into-installing-linux-mint-backdoor/

	
	Introduction
	Related Work
	The SolarWinds Attack
	Overview of Supply Chain Security
	Modeling the Supply Chain
	in-toto, a Framework for Supply Chain Security
	Results
	Summary and Conclusions
	References

