The SolarWinds Attack and Farm-to-table Methods in
the Development Process: Notes

Mitigating disasters through supply chain security

Felicitas Pojtinger

2022-01-06

Topic: The “Solarwinds” attack and farm-to-table methods in the
development process - Mitigating disasters through supply-chain security

Part 0: The SolarWinds Attack (Highly
Evasive Attacker Leverages
SolarWinds Supply Chain)

Part 0: The SolarWinds Attack (Highly Evasive Attacker Leverages SolarWinds

Supply Chain)

- Summary
- On 13 December 2020, FireEye detected a large supply chain attack
targeting SolarWinds Orion
- The actors behind the attack (tracked as UNC2452) gained access to
data and control over both private and public institutions
- Trojanized updates were used to get access to SolarWinds Orion since
as early as Spring 2020
- Result of the attack is lateral movement and data theft
- Backdoor
- SolarWinds.Orion.Core.BusinessLayer.dll is a signed component of
Orion which communicates with external servers using HTTP
- After laying dormant for about two weeks, it receives and executes
commands (“jobs”)
- Network traffic is masqueraded as the Orion Improvement Program
protocol (telemetry)
- Reconnaissance is stored with legitimate data to make detection

Part 1: Overview (Risks in the
Software Supply Chain)

Part 1: Overview (Risks in the Software Supply Chain)

- As the SolarWinds attack has shown, supply chain attacks on any
step of the supply chain can lead to significant breaches
- Let's take a look at the potentials vulnerabilities in a supply chain
- Security is a lifecycle issue:
- Mission thread
- Threat analysis
- Abuse cases
- Architecture and design principles
- Coding rules and guidelines
- Testing, validation and verification
- Monitoring
- Breach awareness
- Historically, software development didn’t have a supply chain
- Software was limited in size, function and audience
- Each organization had their own developers
- Each organization created their own software

M AA A ~rm~fr e~ A i Al A~ v, o, m Ay ~irmm b s o~ S A

Part 2: Framework (Socio-technical
Framework for Threat Modeling a
Software Supply Chain)

Part 2: Framework (Socio-technical Framework for Threat Modeling a Soft-

ware Supply Chain)

- Now that we've analyzed the risks associated with supply chains, let's
take a look at how to model its vulnerabilites from a social and
technical perspective

- Software supply chains are similar to traditional supply chains

- A supply chain is created by deploying and using a product directly
or reproducing it as a new product in repetition

- Traditional supply chains can have risks

- Late product delivery
- Counterfeits
+ Human errors

- Software supply chains have risks too, i.e. faulty code (intentional or
unintentional)

- Risk management is used to counteract these known vulnerabilities

- The first step is to create a threat model of the system 5

CC ThreAaat mvAAAlce mAtictr At A FAmN ~Arvanl Ay Th ArAAar +A A tie~fl

Part 3: Implementation (in-toto:
Providing farm-to-table guarantees
for bits and bytes)

Part 3: Implementation (in-toto: Providing farm-to-table guarantees for bits

and bytes)

- Using this social and technical abstract, let us now take a look at a
concrete implementation of a supply chain security system, in-toto
- Examples of supply chain attacks
- Version control systems: Linux kernel, Gentoo and Google
- Build systems: Fedora, which allowed for signing backdoored version
of security packages
- Build environment: CCleaner
- Software updaters: Microsoft, Adobe, Google and Linux distros
- Are now also used by nation states against foreign states and own
citizens
- Current state
- Supply chain security is limited so securing individual steps
- Git commit signing: Controls which devs can modify what in a repo
- Reproducible builds: Enables building the software by multiple
parties and result must be the same

e« CAftwniares Aalivinrys 1ie +albban rara AF vy manmv mothAade

Part 4: Evaluation (in-toto: Providing
farm-to-table guarantees for bits and
bytes)

Part 4: Evaluation (in-toto: Providing farm-to-table guarantees for bits and

bytes)

- Finally, let's analyze the results that the in-toto maintainers provided
following some initial usage
- Debian rebuilders
- Reproducible builds are bit-by-bit reproducible, so it is possible to
build a package on a separate host and get the same hash on the
result
- A apt-transport for in-toto is used to provide attestations of the
resulting builds using link metadata
- Allow cryptographically asserting that a Debian package has been
reproducibly built by k out of n rebuilders and the Debian build farm
- Modification of a package would require breaching at least k out of n
rebuilders, which the client can verify

- Cloud native builds with Jenkins and Kubernetes
- Cloud-native/containerized environments require high levels of
automation 7

. EvnAartare nf motadata miict hea hAact. anAd infractriirtiira—cacnnctirc

	Part 0: The SolarWinds Attack (Highly Evasive Attacker Leverages SolarWinds Supply Chain)
	Part 1: Overview (Risks in the Software Supply Chain)
	Part 2: Framework (Socio-technical Framework for Threat Modeling a Software Supply Chain)
	Part 3: Implementation (in-toto: Providing farm-to-table guarantees for bits and bytes)
	Part 4: Evaluation (in-toto: Providing farm-to-table guarantees for bits and bytes)

