
Uni Web Topics Presentation
Presentation on Cloud Native Development

Felicitas Pojtinger

2021‑11‑19

Uni Web Topics Presentation 2021‑11‑19

Contents

1 Introduction 2
1.1 Contributing . 2
1.2 License . 2

2 Overview 3

3 Development 3

4 Distribution 5
4.1 Basic Distribution Principles . 5
4.2 Packaging Overview . 7
4.3 Distribution to RedHat Enterprise Linux . 9
4.4 Distribution to Debian GNU/Linux . 10
4.5 Distribution to Linux (universal) . 10
4.6 In Comparison: Comparison to Distribution with Android, Windows andmacOS 10
4.7 Distribution to Kubernetes/the Cloud . 11
4.8 Pipelines . 13

Felicitas Pojtinger 1

Uni Web Topics Presentation 2021‑11‑19

1 Introduction

1.1 Contributing

These study materials are heavily based on professor Heuzeroth’s “Spezielle Themen für Web‑
Anwendungen” lecture at HdM Stuttgart.

Found an error or have a suggestion? Please open an issue on GitHub (github.com/pojntfx/uni‑
webtopics‑notes):

Figure 1: QR code to source repository

If you like the study materials, a GitHub star is always appreciated :)

1.2 License

Figure 2: AGPL‑3.0 license badge

Uni Web Topics Presentation (c) 2021 Felicitas Pojtinger and contributors

SPDX‑License‑Identifier: AGPL‑3.0

Felicitas Pojtinger 2

https://www.hdm-stuttgart.de/vorlesung_detail?vorlid=5212237
https://www.hdm-stuttgart.de/vorlesung_detail?vorlid=5212237
https://github.com/pojntfx/uni-webtopics-notes
https://github.com/pojntfx/uni-webtopics-notes

Uni Web Topics Presentation 2021‑11‑19

2 Overview

• What is DevOps?
• Which parts of the software lifecycle does it cover?

– Development
– Distribution (I will focus on this today)
– Operation

• What is “cloud native”?
• Why are “traditional” distribution methods still relevant?

3 Development

• DevOps also includes development!

• Modern development should not be bound to any client attributes (it should not matter if the
client is a RISC‑V Linux machine, a locked‑downWindows workstation or an Android phone)

• Development should be possible from any platform, for any platform

• The only truly cross‑platform application framework is the web

• PWAsmake it possible for web apps to have all the features native apps have

• PWAs work offline by default

• Why not make our development environments PWAs?

• Virtual machines and user‑friendly hypervisors and containers make it possible to run the edi‑
tor’s backend locally too

• Source code can for example never leave the company’s system

• Development environments can be quickly updated and tightened to prevent supply chain at‑
tacks and increase reproducibility

• Imagine: You find a Free Software project, and all you have to do in order to contribute is press
“.”!

• Onboarding new developers becomesmuch easier

• Independence of client choice enables the use of much cheaper or constrained client devices

• Open standards and web technologies enable the adoption of new client and server hardware
(i.e. RISC‑V chips) easier and enables the easy use of and testing onmultiple architectures

Felicitas Pojtinger 3

Uni Web Topics Presentation 2021‑11‑19

• Autoscaling, ballooning etc. can be used server‑side: There is no need to provision lots of devel‑
opment servers if no one is using them, and if there is a need for a lot of resources (for example
if someone is compiling say a C++ project) the provisioner (i.e. Kubernetes) can dynamically de‑
cide to scale up the container or VM

• There is no need to trust a project’s build system, everything can be sandboxed!

• There are already multiple “cloud IDEs”

• Most are based on VSCode (or, to be more precise, VSCode’s API specification)

• VSCode (or its libre forks, like VSCodium) is already based on web technologies (Electron), so
adapting it to run in the browser is possible

• Theia is an example of an alternative implementation of VSCode’s API, which serves as a vendor‑
neutral implementation of VSCode

• Cloud‑Native IDEs can either be self‑hosted or public SaaS, so let’s take a look at some of them!

• GitPod: Live demo

• Codespaces: Live demo

• pojde: Live demo

• But what if we want to develop things that one can’t normally develop remotely?

• Apps which require Android devices as a target, require a programmer, USB or Bluetooth and
are not using Web Bluetooth/Web Serial (i.e. Android apps, smart home projects, IoT devices,
Arduinos)

– Forward USB over IP
– Forward DBus over IP for BlueZ
– Use SSH tunnels

• Apps which require a Wayland compositor/a screen (i.e. desktop Linux apps, GTK/QT apps)

– Waypipe
– Use SSH tunnels

• Apps which require public ports

– Reverse HTTPS/TLS/UDP/TCP proxies to the public web
– Use SSH tunnels

Felicitas Pojtinger 4

Uni Web Topics Presentation 2021‑11‑19

4 Distribution

4.1 Basic Distribution Principles

• Binaries

– Compiled forms of software
– On Linux: ELF binaries, PE binaries on Windows and MACH‑O binaries onmacOS
– Binaries can be statically or dynamically linked

* Statically linked: Since the Linux ABIs are stable, one can depend on them not chang‑
ing ‑ this allows not linking against any specific C library and makes the resulting bi‑
nary portable across distributions. It also allows including all external dependencies
into the binary, effectively making it a “single‑file” distribution method

* Dynamically linked: Thanks to dlopen and package management, dynamic linking
can also be used. Most of the time (especially on non‑Linux OSes), at least the
C library and external dependencies (i.e. SQLite) thus need to be available in
LD_LIBRARY_PATH at runtime; if they are not, the application can’t continue. This
makes the binaries non‑portable across distributions; for example, if a binary is
built on a Debian 11 host, it most probably won’t run on a Debian 10 host due to the
different versions of the GNU C library used. This does however also have a few big
advantages, which apply especially to Linux distributions.

* Demo: Create a statically‑linked (CGO_ENABLE=1) Go binary, running ldd on it and
running it in twocontainers (DebianandAlpineLinux), then retrying itwitha statically‑
linked (CGO_ENABLE=0) binary

• GPG signing

– GPG: GNU privacy guard; a Free Software implementing GPG (RFC 4880)
– Signatures allow the user to verify the author of a piece of software
– To increase security, only signed software should ever be installed ‑ as we’ll see later, this
is already the case on Linux distributions and their repositories

– For example: If author Alice publishes an app (lets call it “scihab”) and user Bob wishes to
be able to verify that the binary has actually been produced by Alice, he can verify that the
binary has actually been produced by Alice and hasn’t for example been infectedwithmal‑
ware by a malicious actor, in which the case the signature (usually a .asc file) no longer
matches.

– Demo: Creating a signed binary, verifying it (hydrapp), tampering with it (adding bytes to
end), and re‑verifying it using keygaen

• Portability

Felicitas Pojtinger 5

Uni Web Topics Presentation 2021‑11‑19

– Applications should be portable

– Portability canmean different things: Portability as in amount of platforms it can be com‑
piled for, platforms it can be compiled on, platforms it can run on in compiled form, con‑
straints the compiled form needs

– There aremany reasons tomake apps portable, both fromadeveloper’s and a user’s point
of view

– Appscanbe tuned forportabilitywitha fewsimple steps (see inparthttps://drewdevault.com/2021/09/27/Let‑
distros‑do‑their‑job.html)

* Distribution as a simple tarball

* Shipping static binaries

* Use standard build systems andmethodologies (Go, Cargo, Meson, Autotools, CMake
etc.), never use custom bash scripts to build your software; this will ensure that pack‑
aging the software ismuch easier, as the tooling for the build systemprobably already
exists. It also vastly increases the developer experience (DX).

* Inclusion of good release notes makes it much easier from a distro’s or developer’s
perspective to be aware of changes thatmight break the build systemor new runtime
or target platform requirements

* Use dependencies carefully (i.e. use them to reducemaintenance overhead and secu‑
rity issues by having external tests on say usecases like IP or Email parsing); toomany
external dependencies and especially dependencies without a secure external sup‑
ply chain lead to security issues in the app itself, which make it harder to build and
decrease portability (i.e. cryptography libraries often require hardware‑accelerated
CPU support, which is unavailable in low‑end CPUs)

– Portability is however often overlooked; product owners mostly see no value in it, unless
things break. It is up to the developer to take initiative

– Demo: Compiling the Links browser from source with Autotools

• Reproducibility

– Compiling the same source code should always reproduce the same binary, byte‑for‑byte
– This allows the user and external developers to reproduce the binary
– It ensures that the binary has actually been built using the source code in question
– Without reproducibility, the only way to establish that the binary is “trusted” is trusting
the developer who GPG signed the binary ‑ they could have, for example, been paid to
include telemetry or other malware, in which case the compiled binary would not match
the output expected by the source code.

Felicitas Pojtinger 6

Uni Web Topics Presentation 2021‑11‑19

– Reproducibility in combination with the points above also allow checking if changing the
source code actually lead to different results

– Demo: Compiling a Go binarymultiple times leads to a binarywith the same SHA256 hash

• Why we needmore than “just binaries”

– Binaries themselves can be very portable, but are not the best solution
– Binaries can’t (without self‑extraction) include assets other than the programs logic

* Data files (i.e. databases)

* Runtime‑exchangable internationalization/translations

* Config files

* Media files

* Metadata

* Documentation
– Binaries aren’t self‑describing

* Runtime dependencies (libraries, binaries etc.)

* Build‑time dependencies (headers, compilers etc.)

* Language, description etc. metadata
– The solutions: Packages!

4.2 Packaging Overview

• What is a package?

– Includes the binary, assets, metadata and signature
– Is self‑describing
– Mostly some form of archive (i.e. RPM,.tar.gz) in combinationwith ametadata file and
signature

• What is a packagemanager?

– Can install, remove and update packages
– Mostly two components: Low‑level tool to install and remove package files (dpkg on De‑
bian, rpm on Fedora) and a high‑level tool to search, download, install and resolve depen‑
dencies (apt on Debian, dnf on Fedora)

– Can resolve and install runtimeandbuild‑timedependencies (i.e. dependencyonC library,
SQLite, SDL2, headers for cURL etc.)

– Can check GPG signatures of

• Repository

Felicitas Pojtinger 7

Uni Web Topics Presentation 2021‑11‑19

– Can serve packages and their metadata (i.e. versions)
– Large repository mostly provided by a distribution (“a distribution is the repositories”),
with the ability to enable official community repos (i.e. Alpine Linux) and backports (De‑
bian)

– Custom repositories can also be installed and be included in individual packages, so that
installing the package also installs the repository for further updates

• Source packages and tarballs

– Builds should be reproducible
– Source packages contain all information necessary to build the application (including
source code, build‑time dependencies, patches, metadata for package creation)

– Tarballs: tar‑files, tapearchives: A linear storage formatused internally for physical tapes
but also for files. Contains all source code; often zipped (.tar.gz)

– Depending on the package format the source package can contain the source code (Red‑
Hat) or use a separate tarball (Debian)

– There can be additional tarballs, i.e. one with the original source and one with the distro’s
patches (i.e. .debian.tar.gz)

– Many systems allow installing from the binary package (see following) and by download‑
ing & rebuilding the source package

• Binary packages

– Contains the compiled program, data files and metadata (i.e. dependencies on other bi‑
nary packages)

– Is usually what is being used to install the software

• Documentation packages

– Are often separate packages as documentation may not be required for running the soft‑
ware and documentation can be large

– Can have different license from rest of software, i.e. GFDL
– Often ends in docs; i.e. in Alpine Linux, for the binary package mariadb the documenta‑
tion package is called mariadb-docs

• Dependencies

– There are two basic types of dependencies: Build‑time and runtime
– Build‑timedependencies are required to compile the software; i.e. compilers or dependen‑
cies vendored by the distro (i.e. LaTeX packages, headers)

– Runtime dependencies are required to run the software; i.e. dynamically‑linked libraries
(i.e. OpenSSL) or other programs that can be launched

Felicitas Pojtinger 8

Uni Web Topics Presentation 2021‑11‑19

– Dynamic linking is useful in distros as it allows the distro to update all important depen‑
dencies (i.e. the SSL library) at once as long as the ABI didn’t change

– Versions and alternatives can be specified; i.e. Go and gccgo as one of the Go compilers
to choose from or OpenSSL and LibreSSL as one of the SSL libraries to choose from

• Metadata

– Packages often have metadata: ID, Name, description, author, license, version, URL,
changelog etc.

– AppStreammetadata (and to a certain degree, .desktop files) is a standard for this data
– .desktop files provide shortcuts, application categories and window menu options
(mostly of use in a desktop context, but can also be used as an alternative to launching
binaries directly)

• systemd and systemd Units

– Are the basic buildings blocks of a Linux system
– Describe a service/daemon
– Can be either system services (managed by root or an authorized user) or user services
(managed by a user)

– Can describe dependencies on other services; i.e. dependency of backend on database
– Can launch services in parallel if dependencies allow for it
– Supports socket activation: Services will only be started if a user makes a request and is
stopped afterwards (“scale to zero”)

– Can be enabled, started, stopped etc. based on user input or targets (i.e. after system is
turned on, gets an internet connection, has started the shutdown process)

• Demo: Downloading, updating, extracting a package

4.3 Distribution to RedHat Enterprise Linux

• RHEL is a very popular distribution and serves as the upstream of many other distros (CentOS,
Rocky Linux etc.)

• Fedora Linux is its upstream
• Is based on the RPM package format and the DNF packagemanager
• Commercial
• Very long support cycles (at least ten years per major release)
• RPM package format: Demo
• DNF packagemanager and repositories: Demo

Felicitas Pojtinger 9

Uni Web Topics Presentation 2021‑11‑19

4.4 Distribution to Debian GNU/Linux

• Debian is another very popular distribution that also serves as the upstream of many other dis‑
tros (Ubuntu, Linux Mint, Pop!_OS etc.)

• Is based on the DEB package format and the APT packagemanager
• Community‑Driven, completely Free Software
• 5 years support per major release
• DEB package format: Demo
• APT packagemanager and repositories: Demo

4.5 Distribution to Linux (universal)

• Flatpak is a universal package format for Linux (“apps for Linux”)
• Sandboxed
• Standalone/runtime‑based (does not depend on OS‑provided libraries)
• Runs on all Linux distributions, even older major releases: Allows the user to install modern
software on stable systems like Debian

• Permission system: Camera, File Access, Terminals
• Portals: Allow interaction with host system (i.e. screen sharing, file access etc.)
• Includes a universal repository system
• Demo: Setting up Flatpak and installing “Video Downloader”
• No concept of source packages; a single YAML/JSONmanifest (reverse FQDN) is the source pack‑
age and serves as the build system too

• Tight integration with GNOME Builder
• Demo: Creating and building a Flatpak with GNOME
• Why is Flatpak relevant in a web context?: Similar to Docker, which I will show later

4.6 In Comparison: Comparison to Distribution with Android, Windows andmacOS

• As we are in a web context I will only take a short look at proprietary platform’s distribution
mechanism

• The intention here is to showwhy these platforms are not viable for secure usage
• Android

– APKs can be published to a “app store” which is comparable to a repository, i.e. F‑Droid,
Huawei AppGallery, Samsung Galaxy, Amazon App Store or Google Play.

– APKs are ZIP files with a Manifest, Dalvik Bytecode, Resources and native libraries
– Updates are handled by the app store

Felicitas Pojtinger 10

Uni Web Topics Presentation 2021‑11‑19

– Permissions are handled by the operating system

• Windows

– MSI packages or self‑extracting installers are used
– No concept of source or binary packages, no reproducibility ‑ most software is fully propri‑
etary and violates the user’s rights

– Files are tracked through the registry, but arbitrary code can be run at install time
– Has an app store without apps
– Almost all apps implement their own update systems which replaces the app itself with
the update

• macOS

– DMG images or .pkg installers are used
– No concept of source or binary packages, no reproducibility ‑ most software is fully propri‑
etary and violates the user’s rights

– Files are not tracked, but in the case or a DMG image are extracted
– Sandboxing is possible, but not widely used
– Has a heavily restricted app storewhich costs $100 per year and a $2000 computer to send
apps to

– Most apps implement their own update systems which replaces the app itself with the
update

4.7 Distribution to Kubernetes/the Cloud

• Native

– scp to server
– Configure systemd Unit
– Get status and logs using systemctl and journalctl

• Docker

– Like VMs, but the host kernel is shared (isolation taking place by using CGroups)
– “Apps for servers”
– Workflow

* Define Dockerfile

* Create OCI image by using docker build

* Push using docker tag and docker push

* Pull using docker pull

Felicitas Pojtinger 11

Uni Web Topics Presentation 2021‑11‑19

* Start using docker run

* Get logs using docker logs

• Kubernetes

– A declarative orchestration system for containerized applications
– Objects

* Pods: One or multiple containers running an app

* Deployments: Configuration of how pods will be created

* Service: Makes an app (i.e. a gRPC API server) reachable from other pods within the
cluster

* Ingress: Makes a service reachable from the outside

* Autoscaler: Allows vertical or horizontally scaling a deployment
– Internal Components

* CRI: Container runtime interface, manages containers (historically Docker)

* CNI: Container network interface, manages networking between containers (i.e. Flan‑
nel)

* CSI: Container storage interface, manages volumes and attaches them to containers
(i.e. OpenEBS)

– Scheduler: Efficiently scales the pods across the cluster
– Workflow

* Declarative configuration using JSON or YAML

* Define YAML

* Setup Kubeconfig

* Deploy objects to the cluster using kubectl apply

* Get objects using kubectl get

* Delete objects using kubectl delete

* TUIs and GUIs like k9s and Lens canmakemanagement easier

• Helm

– “APT/DNF for Kubernetes”
– Workflow

* Define k8s YAML

* Add Go template syntax

* Define stack (YAML + Go templates)

* Define values (template values)

* Define chart metadata (version etc.)

* helm package

Felicitas Pojtinger 12

Uni Web Topics Presentation 2021‑11‑19

* Upload .tar.gz to repo

* helm repo add

* helm install repo/chart

* Take inventory using helm list

* Delete using helm delete

* TUIs and GUIs like k9s (which also supports Helm) and Kubeapps canmakemanage‑
ment easier

• Skaffold

– “Skaffold handles the workflow for building, pushing and deploying your application, al‑
lowing you to focus on what matters most: writing code.”

– Workflow

* Invoke skaffold (dev or production)

* Builds image using Docker

* Build Helm chart

* Deploys Helm chart to Kubernetes

* Repeats when source files change (in development)
– Features

* No need to configure development clients

* Can use ressources of the cluster

* Offline development is possible by using a local cluster

* Debugging is universal across languages
– Configuration

* Define Skaffold YAML

* Develop with skaffold dev

* Deploy using skaffold run

* Delete using skaffold delete

4.8 Pipelines

• bagop & bagccgop

– Tools to build for a lot of platforms
– Examples in Go, but these kind of tools exist for almost all programming languages
– Cloud environments and Kubernetes clusters are heterogeneous: They can havemany dif‑
ferent CPU architectures (x86_64, arm64, riscv64, ppc64 etc.)

– Portability is the key factor; your apps should not assume their target platforms and use
standard build systems, which makes this much easier

Felicitas Pojtinger 13

Uni Web Topics Presentation 2021‑11‑19

– bagop and bagccgop try to build for all possible targets (i.e. Linux on riscv64, FreeBSD on
x86_64 etc.) by default and then allows you to disable platforms which one can’t compile
for

– bagop works for pure Go, is fast and builds for ~40 targets by default
– Demo: Build a Hello World Go app with bagop
– C libraries further complicate the situation: These require dynamically linked libraries and
headers at compile/runtime, whichmeans that they also require related dependencies at
compile time for the specific target architectureandoperating system, even if static linking
is used

– The solution is to either use tweaked chroots and a cross‑compiler (fast but tricky to set
up) or binfmt and qemu-user-static (slow but easy to set up)

– bagccgop is an automated way to use the first solution
– Can build for all Debian‑supported platforms (including “esoteric” ones like 32‑bit Pow‑
erPC)

– Can build static binaries with CGo thanks to GCCGo
– Allows the use of prettymuch any C library with “cross‑compilation by default” (OpenSSL,
SDL2, Vulkan etc.)

– Demo: Build aHelloWorld CGo app (callsprintf) with bagccgop and run it on the Power‑
Book

– Using a tool like this makes sure that your app is actually portable and notifies you if de‑
pendencies are introduced which break portability

• Hydrun

– Tool to run a command in the current directory on another processor architecture or op‑
erating system

– Is very useful for both building software and testing software (the “runtime equivalent” of
tools like bagop and bagccgop)

– Enables reproducibility of the build system and decreases reliance on available (public)
build environments like the VMs available on GitHub actions

– Can be used to run your build locally and prevent issues which would otherwise only be
“testable” by pushing to i.e. the Git repository connected to the CI system

– Can be used to test built binaries
– Demo: Build a static binary on Debian GNU/Linux through hydrun, bagop and bagccgop
and then test if the binary is actually static by running it in Alpine Linux using it

• GitHub Actions

– Allows you to run commands on remote, ad‑hoc machines in response to triggers (i.e. a
commit has been pushed to a Git repository or a schedule)

Felicitas Pojtinger 14

Uni Web Topics Presentation 2021‑11‑19

– Can be used to build, test and publish software projects
– Is fairly generic and can be extended to use custom actions written in i.e. JavaScript
– Is configured using YAML
– Can use GitHub’s hostedmachines or self‑hosted nodes
– on: Describes the triggers for the build system
– jobs: Describes the commands to run and actions to execute for a build configuration
– strategy: Describes a matrix of build configurations that can be executed in parallel
(i.e. different binaries for the project, different build commands)

– Pre‑written actions can be very useful as a low‑maintenanceway to add complex function‑
ality:

* actions/checkout: git clones the source code of the branch on which the
event has been triggered

* docker/setup-qemu-action: Installs QEMU, which allows the pipeline to run
binaries for different target architectures

* docker/setup-buildx-action: Installs buildx, the next‑generation build
command for Docker with better support for multiple architectures

* actions/upload-artifact and actions/download-artifact: Upload/‑
download an artifact to the current run’s cache (i.e. to exchange it between jobs)

* marvinpinto/action-automatic-releases: Create as a GitHub releases
and uploads assets; see the next section

• Semantic Versioning and Semantic Release

– Defines a formalized versioning scheme
– Used almost universally
– Three parts of a version: MAJOR.MINOR.PATCH

* MAJOR: Increment if incompatible API changes were made

* MINOR: Increment if backwards‑compatible features were added

* PATCH: Increment if backwards‑compatible bug fixes were added

– Is not only useful to thosewriting& releasing software, but also those consuming it (i.e. dis‑
tributions like Debian or projects which depend on external libraries)

– Semantic Release is a tool to make using it easier

* 1: git tag (i.e. git tag v0.1.0)

* 2: Push

* Semantic Release will create a GitHub release, corresponding changelog and upload‑
/publish release assets (i.e. source code or binaries)

* Demo: Release example software using GitHub Actions it

Felicitas Pojtinger 15

	Introduction
	Contributing
	License

	Overview
	Development
	Distribution
	Basic Distribution Principles
	Packaging Overview
	Distribution to RedHat Enterprise Linux
	Distribution to Debian GNU/Linux
	Distribution to Linux (universal)
	In Comparison: Comparison to Distribution with Android, Windows and macOS
	Distribution to Kubernetes/the Cloud
	Pipelines

