Uni Web Topics Presentation

Presentation on Cloud Native Development

Felicitas Pojtinger

2021-11-19



Introduction



These study materials are heavily based on professor Heuzeroth's
“Spezielle Themen fur Web-Anwendungen” lecture at HAM Stuttgart.

Found an error or have a suggestion? Please open an issue on GitHub
(github.com/pojntfx/uni-webtopics-notes):

Figure 1: QR code to source repository


https://www.hdm-stuttgart.de/vorlesung_detail?vorlid=5212237
https://www.hdm-stuttgart.de/vorlesung_detail?vorlid=5212237
https://github.com/pojntfx/uni-webtopics-notes

License

Fres Soffware

AE'PI_W

Figure 2: AGPL-3.0 license badge

Uni Web Topics Presentation (c) 2021 Felicitas Pojtinger and contributors

SPDX-License-ldentifier: AGPL-3.0



Overview



Overview

- What is DevOps?
- Which parts of the software lifecycle does it cover?
- Development
- Distribution (I will focus on this today)
- Operation
- What is “cloud native"?
- Why are “traditional” distribution methods still relevant?



Development



Development

- DevOps also includes development!

- Modern development should not be bound to any client attributes (it
should not matter if the client is a RISC-V Linux machine, a

locked-down Windows workstation or an Android phone)
- Development should be possible from any platform, for any platform
- The only truly cross-platform application framework is the web

- PWAs make it possible for web apps to have all the features native

apps have
- PWAs work offline by default
- Why not make our development environments PWAs?

- Virtual machines and user-friendly hypervisors and containers make

it nossible to run the editor's backend locallv too



Distribution




Basic Distribution Principles

- Binaries

- Compiled forms of software
- On Linux: ELF binaries, PE binaries on Windows and MACH-O binaries
on macOS
- Binaries can be statically or dynamically linked
- Statically linked: Since the Linux ABIs are stable, one can depend on
them not changing - this allows not linking against any specific C
library and makes the resulting binary portable across distributions. It
also allows including all external dependencies into the binary,
effectively making it a “single-file” distribution method
- Dynamically linked: Thanks to dlopen and package management,
dynamic linking can also be used. Most of the time (especially on
non-Linux 0Ses), at least the C library and external dependencies
(i.e. SQLite) thus need to be available in LD_LIBRARY_PATH at runtime; if
they are not, the application can't continue. This makes the binaries
non-portable across distributions; for example, if a binary is built on a

Debian 11 host, it most probably won't run on a Debian 10 host due to 6

+the different vercinne nf the GNII C librarv riced Thic doec howevar



Packaging Overview

- What is a package?

- Includes the binary, assets, metadata and signature

- Is self-describing

- Mostly some form of archive (i.e. RPM, .tar.gz) in combination with a
metadata file and signature

- What is a package manager?

- Can install, remove and update packages

- Mostly two components: Low-level tool to install and remove package
files (dpkg on Debian, rpm on Fedora) and a high-level tool to search,
download, install and resolve dependencies (apt on Debian, dnf on
Fedora)

- Can resolve and install runtime and build-time dependencies
(i.e. dependency on C library, SQLite, SDL2, headers for cURL etc.)

- Can check GPG signatures of

. RanncitAar/



Distribution to RedHat Enterprise Linux

- RHEL is a very popular distribution and serves as the upstream of
many other distros (CentOS, Rocky Linux etc.)

- Fedora Linux is its upstream

- Is based on the RPM package format and the DNF package manager

- Commercial

- Very long support cycles (at least ten years per major release)

- RPM package format: Demo

- DNF package manager and repositories: Demo



Distribution to Debian GNU/Linux

- Debian is another very popular distribution that also serves as the
upstream of many other distros (Ubuntu, Linux Mint, Pop!_OS etc.)

- Is based on the DEB package format and the APT package manager

- Community-Driven, completely Free Software

- 5years support per major release

- DEB package format: Demo

- APT package manager and repositories: Demo



Distribution to Linux (universal)

- Flatpak is a universal package format for Linux (“apps for Linux”)

- Sandboxed

- Standalone/runtime-based (does not depend on 0S-provided
libraries)

- Runs on all Linux distributions, even older major releases: Allows the
user to install modern software on stable systems like Debian

- Permission system: Camera, File Access, Terminals

- Portals: Allow interaction with host system (i.e. screen sharing, file
access etc.)

- Includes a universal repository system

- Demo: Setting up Flatpak and installing “Video Downloader”

- No concept of source packages; a single YAML/JSON manifest
(reverse FQDN) is the source package and serves as the build system
too

- Tight integration with GNOME Builder (C



In Comparison: Comparison to Distribution with Android, Windows and ma-

cOS

- As we are in a web context | will only take a short look at proprietary
platform’s distribution mechanism
- The intention here is to show why these platforms are not viable for
secure usage
- Android
- APKs can be published to a “app store” which is comparable to a
repository, i.e. F-Droid, Huawei AppGallery, Samsung Galaxy, Amazon
App Store or Google Play.
- APKs are ZIP files with a Manifest, Dalvik Bytecode, Resources and
native libraries
- Updates are handled by the app store
- Permissions are handled by the operating system
- Windows
- MSI packages or self-extracting installers are used
- No concept of source or binary packages, no reproducibility - most n



Distribution to Kubernetes/the Cloud

- Native

- scp to server
- Configure systemd Unit
- Get status and logs using systemctl and journalctl

- Docker

- Like VMs, but the host kernel is shared (isolation taking place by
using CGroups)

- “Apps for servers”

- Workflow
- Define Dockerfile
- Create OCl image by using docker build
- Push using docker tag and docker push
- Pull using docker pull
- Start using docker run
- Get logs using docker logs B



- bagop & bagccgop
- Tools to build for a lot of platforms

- Examples in Go, but these kind of tools exist for almost all
programming languages

- Cloud environments and Kubernetes clusters are heterogeneous:
They can have many different CPU architectures (x86_64, armés,
riscv64, ppc6h etc.)

- Portability is the key factor; your apps should not assume their target
platforms and use standard build systems, which makes this much
easier

- bagop and bagccgop try to build for all possible targets (i.e. Linux on
riscves, FreeBSD on x86_64 etc.) by default and then allows you to
disable platforms which one can’t compile for

- bagop works for pure Go, is fast and builds for ~40 targets by default

- Demo: Build a Hello World Go app with bagop

- Clibraries further complicate the situation: These require

dynamically linked libraries and headers at compile/runtime, which 1



	Introduction
	Contributing
	License

	Overview
	Development
	Distribution
	Basic Distribution Principles
	Packaging Overview
	Distribution to RedHat Enterprise Linux
	Distribution to Debian GNU/Linux
	Distribution to Linux (universal)
	In Comparison: Comparison to Distribution with Android, Windows and macOS
	Distribution to Kubernetes/the Cloud
	Pipelines


